1. Field of the Invention
The present invention relates to a stereo image display technique and methodology, by which 2D or 3D image display may be manually or automatically switched in two display directions.
2. Description of Related Art
As is understood to those of skill in the art, prior art displays, which may be viewed as 2D or 3D images, generally fall into three methods for the display of 3D imagery.
The first method employs polarized light images where the planes for left and right images are rotated by approximately 90 degrees. These polarized left and right images pass through polarized spectacles so that the corresponding image reaches the left and right eye.
A technique described in U.S. Pat. No. 5,894,361 generally shows a display having a pattern of pixels with 90 degree changes in the direction of orientation. However, this reference is limited to one display orientation. As illustrated in
Another related method employs liquid crystal shutter spectacles, which open and close left and right shutters so as to allow the corresponding image to reach the correct eye. However, such displays require the use of bulky and expensive spectacles.
A third prior art technique generally requires no spectacles and utilizes parallax barriers so that only the proper image is seen by each eye. This technique requires that the viewer remain in an optimal location for 3D viewing. Other spectators, however, may not be able to see the 3D imagery clearly. In addition, this technique does not allow for tilting of the display, as is required by some applications.
Prior art illustrates displays which are able to change display direction. These are present in tablets and smart phones. However, they are limited to 2D images except as noted below.
A technique generally shown in U.S. Pat. No. 8,018,536 is a display with a parallax barrier, which allows 3D viewing in portrait and landscape modes. However, this method has the limitations of parallax barriers, requiring the viewer to be in optimal location for 3D viewing. Other spectators may thus not be able to see the 3D imagery clearly. In addition, this reference does not allow for tilting of the display as is required by some applications.
Another technique is generally shown in EU. Pat. No. EP 2394195 A2, which is a display using liquid crystal shutter glasses. These glasses, however, require Bluetooth coordination, and are prone to connection issues as well. They are also bulky and expensive for replacement or multiple viewers. In addition, the glasses, being electronic devices require a source of power and are prone to failure.
There is, therefore, a need for an improved stereo imaging device that overcomes the limitation of the aforementioned devices and techniques of the prior art
The present invention is directed to a stereo image display methodology, system, and device, which may switch between a portrait and landscape modes, and may have a 3D display effect in both modes when viewed through the same pair of polarized glasses. These glasses may be lightweight, inexpensive and require no electronic components.
The present invention relates to a stereo image display system or device which may be viewed in two different display directions or orientations. This display device may be viewed in 2D mode in either display direction. It may also have a 3D stereoscopic effect in both display directions.
Furthermore, in the present invention a first or left 3D image presented for viewing through left lens of stereoscopic glasses has the same polarization direction, from the perspective of the viewer, in both display orientations. Also, in the present invention a second or right 3D image presented for viewing through the right lens of stereoscopic glasses has the same polarization direction, from the perspective of the viewer, in both display orientations. This has the advantage of not requiring two sets of alternately polarized glasses when the display is rotated.
In the present invention, the switching from portrait to landscape mode in 3D may be automatic or it may be manually controlled. It may also be locked by the user in either portrait or landscape orientation.
One embodiment of the present invention provides a stereo image display device includes a source of light, a polarizing module, a display direction sensor or switch, an image display unit, and polarized glasses or spectacles. The polarized light of the left image is displayed in a pattern which is polarized so as to pass through the left lens of the glasses. The polarized light of the right image is displayed in a pattern which is polarized so as to pass through the right lens of the glasses. This allows the user to view the image in 3D.
Upon rotation, the orientation sensor senses the new orientation or a manual signal is sent to direct the orientation to be displayed. An automatic or manual signal (if desired) is sent to the image pattern and polarization pattern modules. The polarization pattern is now coordinated with the left and right image pattern so the image is viewable in 3D using the same 3D glasses as if the display were still in the original direction. In one embodiment, a polarization direction associated with the left image is rotated approximately 90 degrees from the original direction. In another embodiment, the left and right image pattern placements may be swapped after display rotation. In this way after change in display direction, the left image is now associated with the polarization direction previously associated with the right image.
Prior displays are generally capable of displaying 2D and 3D images. A prior method involves the use of polarized glasses to view the image in 3D. They are also capable of changing 2D display orientations when the device is rotated from portrait to landscape mode. The present invention, however, combines these two features, and allows both 2D and 3D display in both landscape and portrait display directions. The present invention uses polarized stereoscopic spectacles for viewing the image in 3D. The remapping of left and right images and/or polarization pattern enables the same pair of 3D glasses to be used in both display directions.
As is understood in the art, there are many ways of accomplishing this end. Although there are many variations of placement of parts, image patterns, polarization patterns, different layering of parts, and/or display images which accomplish the same objective, one skilled in the art will be able to readily understand the principles set forth herein and claimed. It should further be understood that the instant invention, described exemplarily through the embodiments below, is not limited to the particular details of these embodiments, but instead by the claims set forth hereinbelow, and includes variations within the scope of the present invention.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the present invention, it is believed that the invention will be better understood from the following Detailed Description, taken in conjunction with the accompanying Drawings, where like reference numerals designate like structural and other elements, in which:
The present invention will now be described more fully hereinafter with reference to the accompanying Drawings, in which preferred embodiments of the invention are shown. It is, of course, understood that this invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that the disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It is, therefore, to be understood that other embodiments can be utilized and structural changes can be made without departing from the scope of the present invention.
As discussed in the Background section hereinabove, various conventional 3D stereoscopic contain displays which are capable of displaying in 2D and 3D modes and which utilize polarizing glasses. These devices are, however, limited to one orientation, as for example a television display.
Handheld devices of the prior art include devices, such as smart-phones and handheld tablet devices, whose landscape and portrait modes are interchangeable by rotating the handheld device through 90 degree rotations. An orientation or motion sensor is used in these devices to automatically switch orientation modes. However, they are limited to 2D display.
Prior art 3D stereoscopic imaging mechanisms either employ fixed quarter phase rotation devices or an electronically-controlled quarter phase rotation mechanism, such as liquid crystals. These mechanisms may be arranged in any pattern so that a left image is produced in 90 degree opposition to a right image. U.S. Pat. No. 5,894,361 shows a checkerboard pattern. However, the prior art also discusses stripe patterns, and various patterns may be used to produce the same effect.
With reference now to
As shown in
When an image, generally designated by the reference numeral 100, comprised of discrete pixels 112 is generated, it may or may not be polarized, depending on if it was created as LCD, LED, organic, or other display technology. In one embodiment of the present invention, a polarizing sheet, or pattern of polarizers, generally designated by the reference numeral 101, may be employed if the light needs to be initially polarized before passing through a pattern polarizer, generally designated by the reference numeral 102. It should be understood that the pattern polarizer 102 has a number of cells 102A, which contain an electronically-configurable polarization direction rotation or a fixed polarization direction rotation. This is described further hereinbelow in connection with
In this way, for example, the aforementioned left eye pixels item 106 may be viewed through the left eyepiece 109 of the stereoscopic glasses 108 and the right eye pixels 107 may be viewed through the right lens 110 of the stereoscopic glasses.
With reference now to
A group of polarization cells of electronically-controlled polarization direction, expanded from a small area 111 of the polarization pattern 102, is designated by the reference numeral 103. The pattern of left and right image of item 100 is then matched with the corresponding rotatable cell in proper polarization direction so as to pass through the left or right eyepiece of the glasses 108 so as to produce a stereoscopic effect. When the display is rotated approximately 90 degrees, the image and/or polarization pattern is changed so as to produce the same effect in the new orientation. This embodiment has the advantage of flexibility as either the image or the polarizer pattern may be changed.
With reference now to
A cross section of an example polarization direction pattern is represented by an expanded portion 121 of the polarization pattern 102, and designated herein with more particularity by the reference numeral 123. The left and right image patterns are controlled by a processing unit and display orientation sensor to output an image 100 pattern, which aligns with the polarization pattern 102 in such a manner so the left image passes through the left lens 109 of the glasses 108 and the right image passes through the right lens 110 of the glasses 108. This embodiment has an advantage of simplicity and is also inexpensive.
With reference now to
The instant embodiment illustrates an example where the polarization direction is rotated to the left and to the right by approximately 45 degrees, as shown by the reference numerals 146 and 147. Accordingly, this produces a net effect of approximately 90 degree separation of polarization direction for left and right eye pixels. Thus, when viewed through the aforementioned polarized glasses 108, this produces the desired stereoscopic effect.
Since the angle of rotation of polarization direction is less, this embodiment has the advantage of thinner polarization rotation devices, enabling a thinner display for the device.
It should also be understood that any of the aforementioned parts may be recombined in different combinations, layering, degree of polarization rotation, or sequence of layering so as to produce the same effect.
With reference now to
With reference now to
With reference now to
As shown, some or all of the polarization directions within the pixels of section 406 would be rotated, designated by reference numeral 407, while others would not, designated by reference numeral 408 in
It should be understood that in this embodiment, the processing unit 401does the coordination, but the parts described are to be interpreted in a generic and descriptive sense only, and not for purpose of limitation. Accordingly, it will be understood many ways of accomplishing this coordination of left and right image to polarization may be made without departing from the spirit and scope of the present invention as set forth in the claims.
With reference now to
Furthermore, although exemplary embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only, and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the claims.
By way of conclusion, the prior art in this area of technology encompasses displays having patterns of 90 degree polarization directions, which produce a 3D stereoscopic effect when viewed through wearable polarized glasses. This prior art, such as the references cited herein, is limited to one 3D display orientation.
In other prior art, displays may be rotated approximately 90 degrees so as to present 2D portrait and landscape modes with automatic switching between the modes. An orientation sensor is employed which sends a signal to the display indicating which mode to display. The portrait or landscape 2D modes may also be locked at the convenience of the user. This prior art, however, is limited in being able to only display 2D imagery under portrait and landscape modes.
Utilizing 3D shutter glasses requires the user to employ bulky and expensive shutter glasses which actively open and close shutters. This requires battery power and a complex timing signal to be sent to the shutter glasses to synchronize opening and closing of the shutters. This complexity may tend to make such devices unreliable, prone to breakage, and expensive to repair.
Additional prior art utilizes parallax barriers to obtain 3D stereoscopic effects. There is prior art which enables the parallax barriers to function in different display orientations. However, the parallax barriers limit the eye placement of the viewer to a narrow range. In addition, due to this it is difficult to share viewing or gaming imagery with other viewers. Furthermore there are many applications, which require the user to tilt the image display. An example would be a gaming application, where the image display simulates a surface upon which a ball is rolling and motion sensors in the device cause the ball to roll. Such an application would not be viewable in 3D through parallax barriers when the image display is tilted relative to the eye.
The instant invention improves upon the prior art by allowing a 2D and 3D imaging device, which may be used in both landscape and portrait rotations. This invention uses simple polarized glasses, which are inexpensive, lightweight, and impervious to failure. Furthermore, additional 3D glasses may be made inexpensively. This allows additional users to share in the 3D experience. In addition, the device may be tilted, allowing applications which use motion sensing to operate, all the while maintaining clear 3D imaging.
These and other advantages are readily apparent to one who has viewed the accompanying figures and read the descriptions.
Exemplary embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the invention is not to be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.
This application claims the priority benefit of U.S. Provisional Patent Applications Ser. No. 61/712,495, filed on Oct. 11, 2012, and Ser. No. 61/758,557, filed on Jan. 30, 2013, the subject matter for which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61712495 | Oct 2012 | US | |
61758557 | Jan 2013 | US |