This invention relates generally to radial inflow turbines, and more particularly, to a variable vaned nozzle system for such turbines.
A radial turbine is a practical device for converting influent (e.g. gas) pressure and temperature to shaft power. A radial inflow turbine employs an annular inlet surrounding a turbine wheel through which the influent under pressure is directed. To uniformly distribute the influent, vanes are disposed about the annular inlet to create nozzles. Many radial inflow turbines incorporate fixed geometry nozzle vanes, or airfoils, in an attempt to optimally guide the influent entering the rotor. In such cases the principal flow parameters, such as pressure, mass flow rate, and temperature remain in fixed proportion, and cannot be individually controlled. A variable nozzle provides an additional degree of control freedom, permitting independent control over inlet temperature, pressure, and flow through the turbine stage.
These variable nozzles are often variable through the controlled pivotal motion of the vanes. Changing the stagger angle alters the throat between the vanes and changes the flow angle entering the rotor. The pivotal vanes are typically mounted between mounting rings which are positioned in a housing to either side of the annular inlet. In one example, the vanes are rotated by a series of horizontal and vertical wheels strung together on a cable. One wheel is rotated by a motor shaft connected to a motor. This one wheel, in turn, rotates each other wheel by drawing the cable clockwise or counterclockwise around each wheel. The vanes can rotate, for instance, by being connected to the axis of the wheels that rotate in a plane parallel with the plane of the mounting ring.
In another device, each vane is attached to a rod which is positioned perpendicular to the influent flow direction. The rods, in a circumferential array, protrude through a movable annular back-wall, and are rotated by a linkage. The vanes in this assembly are adjusted in discrete movements.
These types of nozzle systems are bulky, with many duplicate parts required to adjust the vanes. The bulkiness or clumsiness of these assemblies can be problematic. The additional parts and more complicated assemblies add to the manufacturing and assembly costs. Also, with the bulky, duplicate parts, sealing the influent flow paths to increase or maintain influent pressure and velocity through the nozzles can be difficult and complicated, or it can add further to the bulkiness. Each opening from the influent flow path that accommodates a part necessary for the vane adjustment is an opening that must be sealed. Duplicate parts create additional areas that need to be sealed Furthermore, these systems are limited or devoid in their adaptability for use with various existing radial inflow turbines because the parts are not easily repositioned or resized to accommodate differently configured or differently sized turbines.
It would be advantageous to eliminate or reduce duplicate parts or simplify the nozzle adjustment mechanism.
It would be advantageous to simplify the sealing arrangements and increase the sealing integrity, efficiency, or durability.
It would be advantageous to lower costs associated with component manufacturing and system assembly.
It would be advantageous to provide a nozzle assembly that can be easily adapted for use with a variety of existing radial inflow turbines.
In one embodiment of the invention, a nozzle assembly for adjusting a radial inflow turbine is provided. The nozzle assembly can comprise a gas inlet ring, a gas outlet ring, an actuation ring, a plurality of guides, and a plurality of nozzle vanes. The gas outlet ring can be spaced apart from the gas inlet ring and the gas outlet ring can oppose the gas inlet ring. The actuation ring can have a central axis about which the actuation ring is rotatable with respect to the inlet ring and the outlet ring. The plurality of guides can be connected to at least one of the gas inlet ring, the gas outlet ring, and the actuation ring. The plurality of nozzle vanes can be circumferentially spaced and disposed between the gas inlet ring and the gas outlet ring, with each nozzle vane rotatable about a vane pivot axis with respect to the gas inlet ring and the gas outlet ring, and each nozzle vane in sliding engagement with a respective guide from the plurality of guides.
In another embodiment of the invention, a variable nozzle system for a radial inflow turbine is provided. The variable nozzle system can comprise a first mounting ring, a second mounting ring, a plurality of vanes, a plurality of nozzles, an actuation ring, a gear rack, and a gear shaft. The second mounting ring can be spaced apart from the first mounting ring and the second mounting ring can oppose the first mounting ring. The plurality of vanes can be circumferentially spaced between the first mounting ring and the second mounting ring, and each vane can have a pivot point around which each vane is rotatable to adjust a plurality of nozzles. Each nozzle in the plurality of nozzles can be defined on four sides by the first mounting ring, the second mounting ring, and two vanes from the plurality of vanes. The actuation ring can have a central axis about which the actuation ring is rotatable with respect to the first mounting ring and the second mounting ring. The actuation ring can also be engaged with each nozzle vane from the plurality of nozzle vanes to drive the rotation of each nozzle vane. The gear rack can be attached to the actuation ring. The gear shaft can extend through the second mounting ring and can have a pinion engageable with the gear rack.
For a further understanding of the invention, reference will be made to the following detailed description of the invention which is to be read in connection with the accompanying drawing, where:
Referring now to the various figures of the drawings, there is illustrated one embodiment of the present invention. In referring to the various figures, like numerals shall refer to like parts.
Referring again to
One or more of the guides 30 can be a bolt 30 to fasten the inlet ring 20 to the outlet ring 16, with the vanes 14 in between the inlet ring 20 and the outlet ring 16. In the illustrated embodiment, three of the guides 30 are bolts 30. The bolts 30 can be double headed or of another variety suitable to fasten securely to one or both of the inlet ring 20, the outlet ring 16, or another stationary structure within the nozzle assembly 12. The bolts 30, or other bolts used in the assembly, and the position of these bolts can be adapted for use with various existing turbines. For instance, the illustrated embodiment can be modified to use bolts that preexist in various, existing turbines as the bolts 30, pins 30, or other fastening or pivoting devices.
A spacer 32 can be used around each guide pin 30 in each slot 22 in order to provide the appropriate clearance between the inlet ring 20 and the outlet ring 16 so that the vane 14 can move in a plane parallel to the plane of the inlet ring 20 and the outlet ring 16. If the appropriate dimensional clearance between the inlet ring 20 and outlet ring 16 is not maintained when the vanes 14 are to be moved, then the vanes 14 might be squeezed between the inlet ring 20 and the outlet ring 16, creating excessive friction that can obstruct proper movement of the vanes 14. Other mechanisms known in the art can also be used to create a permanent or temporary clearance between the vanes 14 and the inlet ring 20, and/or between the vanes 14 and the outlet ring 16, so that the vanes 14 can move when actuated.
The actuation ring 34 also has, or is connected to, the gear rack 46. The gear rack 46 has gear rack teeth 47 which fit with similar gear shaft teeth (not shown) on an end of a gear shaft 48 (see
Referring again to
When the actuation ring 34 rotates, the axes of the pivot pins 36 and the respective holes 28 move rotationally around the central axis 10 along with the actuation ring 34. The rotational movement of the vanes 14 along with the actuation ring 34, with respect to the stationary guides 30 and the outlet ring 16, causes the vanes 14 to rotate and the slots 22 to slide on the guides 30.
In an alternate embodiment, the slot 22 can be in the tail end 18, while the hole 28 can be in the head end 24. The nozzle assembly 12 can be modified accordingly, particularly including the pivot pins 36 and guides 30. In this alternative embodiment, the guides 30 can function as, or be modified to function as pivot pins. Likewise, the pivot pins 36 can function as, or be modified to function as guides. When the actuation ring 34 rotates, the pivot pins 36 functioning (or modified to function) as guides move with the actuation ring 34, causing the vanes 14 to slide on the pivot pins 36 functioning (or modified to function) as guides. Also, the vanes 14 rotate about the holes 28 and the guides 30 functioning (or modified to function) as pivot pins.
In practical application, the need to adjust the nozzles 26 is dictated by external variables, such as a demand for power, changing input from the fuel source, a natural variation in the supply pressure, and so forth. Methods and means to detect external variables and operate a motor based on the external variable using a digital microprocessor, microcontroller, or other programmable controller are known.
It is important to seal the nozzle assembly 12 properly in order to maintain pressure integrities and restrict influent flow to the desired path through the nozzle assembly 12. As such, appropriate seals are used. For instance, the gland 58 provides one such seal. An O-ring or other seal can also be used to seal around each of the guide pins 30, for instance, if the guide pins 30 extend all the way through the inlet ring 20 or the outlet ring 16. Other seals and sealing mechanisms can be used as are known in the art and/or would be recognized by one skilled in the art.
The terminology used herein is for the purpose of description, not limitation. Specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for teaching one skilled in the art to employ the present invention. While the present invention has been particularly shown and described with reference to the exemplary embodiments as illustrated in the drawing, it will be recognized by those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. Those skilled in the art will also recognize the equivalents that may be substituted for elements described with reference to the exemplary embodiments disclosed herein without departing from the scope of the present invention. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed as, but that the disclosure will include all embodiments falling within the scope of the appended claims.