Embodiments described relate to delivery and use of rotatable devices such as drill-out and milling tools in a well. Such tools may be configured for downhole conveyance and delivery over a smaller and less expensive wireline platform without compromise to downhole force drive consistency.
Exploring, drilling and completing hydrocarbon wells are generally complicated, time consuming and ultimately very expensive endeavors. As a result, over the years increased attention has been paid to monitoring and maintaining the health of such wells. Premiums are placed on maximizing the total hydrocarbon recovery, recovery rate, and extending the overall life of the well as much as possible. Thus, logging applications for monitoring of well conditions play a significant role in the life of the well. Similarly, importance is placed on well intervention applications, such as clean-out techniques which may be utilized to modify downhole architecture and/or remove debris from the well so as to ensure unobstructed hydrocarbon recovery.
Following initial completions, the need to mill or drill-out downhole obstructions through interventional applications may arise. For example, it is not uncommon for regions of the well to naturally experience the buildup of scale and other debris which has a tendency to obstruct recovery and/or impede other downhole functionality such as the opening and closing of valves, sliding sleeves, etc. Furthermore, in many cases, a downhole obstruction may be present in the form of an irreversibly set flapper or isolation valve or other such architectural barrier. While such features may be intentionally locked in place, their removal may nevertheless require a subsequent drill-out or milling intervention.
Drill-out and/or milling removal of isolation valves and other, usually metal-based obstructions, is generally driven by way of a coiled tubing or drill pipe operations. So for example, production operations may be shut down as large scale coiled tubing equipment is delivered at the oilfield and rigged up to the well. A milling tool may then be advanced downhole by way of coiled tubing with a rotatable bit of the tool directed at the isolation valve to achieve its removal. In the case of coiled tubing, 25-50 horsepower or more may be reasonably available for driving such milling. Further, where more power is desired, substantially larger scale drill pipe equipment may be utilized to drive the milling application, such equipment readily supplying horsepower in the hundreds.
Unfortunately, driving of such milling and/or drill-out applications comes at a fairly significant price. Namely, the time required to rig-up and run such large scale applications may be quite costly, not to mention the amount of footspace required to support such equipment. Indeed, in addition to recognizing the significant expenses involved in completions operations as described above, significant efforts have also been directed at cost-reductions for follow-on maintenance applications such as the noted milling and drill-out applications. Thus, recently efforts have been made to allow for delivery and powering of such applications over wireline conveyance.
Wireline delivery of milling and/or drill-out tools involves the rig-up and deployment of much smaller scale wireline equipment, as compared to the above noted coiled tubing or drill pipe deployment equipment. Thus, the time and footspace required for rig-up and running of the application may be dramatically reduced, not to mention the overall manpower required.
Unfortunately, wireline equipment effectively provides a limited amount of horsepower downhole, generally well below 10 horsepower. In circumstances where the equipment is employed to aid in scale removal, such power may be more than adequate. However, as described below, where the application is directed at the removal of isolation valves and other such metal based features, particular challenges may arise that prevent efficient or effective removal with such limited horsepower available.
The rotating bit of a drill-out or milling tool is forcibly driven in a downhole direction by way of an adjacent actuator that includes a reciprocating piston. This piston is itself hydraulically driven. In other words, fluid pumped in and out of a pressurizable housing may be used to reciprocate the piston. However, such fluid is inherently compressible to a certain degree. That is to say, pressure in a chamber of the housing may be driven up to advance the piston. However, such pressure may alternately result in a degree of compression of the fluid itself. To the extent that this occurs, the piston is no longer forcibly driven. Ultimately, this may result in a ‘bounce’ or a certain degree of inconsistency in the driving of the bit relative the obstruction.
Where the obstruction is a metal-based feature, such inconsistent driving or ‘bouncing’ of the milling or drill-out bit may result in cold working and hardening of the feature. This is due to the fact that with less than about 5-10 horsepower available, even a minor degree of bounce is likely to translate into actual intermittent disengagement of the bit relative the feature. As a result, the amount of time required to complete the removal of the feature may be increased dramatically. Such is often the case where the feature is an isolation valve which is often of a metal based superalloy. Furthermore, where a carbide or other sufficiently hard bit is employed, the likelihood of the bit breaking in response to such bouncing and hardening of the valve is quite significant. Indeed, where this occurs, the entire wireline assembly may be removed from the well for bit replacement, thereby adding as much as a day's worth of time to the application. Therefore, at present, wireline deployment of milling and/or drill-out equipment is generally foregone in place of much more expensive and time consuming alternatives.
A downhole tool assembly is provided that includes a rotatable tool for deployment in a well over wireline conveyance. The tool is hydraulically driven through an actuator coupled thereto. Further, the actuator includes a reciprocating ball screw piston for interfacing a mounted ball nut so as to enhance the consistency of its driving of the tool.
The reciprocating ball screw piston may include a head disposed in a pressure housing. Thus, guided reciprocation of the piston may be achieved. A ball screw of the piston may also be present which is coupled to the head and also disposed outside of the housing where it is configured to interface the mounted ball nut. The interfacing of the nut may be a threadable interfacing such that damping is allowed thereby enhancing the consistency of the driving of the tool.
An embodiment of a compound linear actuator comprises an actuator comprising at least an axially movable component configured to be displaced in opposing directions by the actuator and an axial displacement conversion device coupled to the axially moveable component for enhancing consistency of the movement of the component.
Embodiments are described with reference to certain downhole applications where a rotatable cutting device is employed. In particular, wireline deployed tools are shown and described which are directed at milling out certain downhole obstructions. However, a variety of low horsepower driven rotatable downhole tools may take advantage of enhanced hydraulic tools and techniques detailed herein. For example, drilling tools and other devices may utilize actuators detailed herein to help avoid irregular downward or axial thrust during drill out applications, during actuation of sliding sleeves, during actuation of valves with shifting profiles, etc.
Referring now to
The milling tool 100 is equipped with an actuator 101 which provides an axial force for driving a bit 177 of a rotary cutting device 175 into an obstruction to achieve its deterioration and removal (see
The actuator 101 may be hydraulic in nature as detailed in
Referring now to
As described above, the obstruction 285 may be a conventional metal component such as an isolation valve, perhaps of superalloy construction. Further, the bit 177 of the tool 100 may be a carbide or comparably hard material. Nevertheless, and in spite of having available power of less than about 10 horsepower available, the tool 100 may achieve complete drill out of the obstruction 285 in about two hours. As indicated above and detailed below, such wireline milling is rendered practical due to the inclusion of an actuator 101 of enhanced drive consistency that substantially avoids any ‘bounce’ in drive during the application. The substantial elimination of this bounce also advantageously allows for a reduction in power requirements for the cutting device 175 as compared to the power requirements of the coiled tubing equipment 220 of
By way of comparison, conventional milling operations are depicted in
Continuing with reference to
Referring now to
The cross-sectional view of
Continuing with reference to
At one side of the dampening chamber 375, the noted intermediate chamber 350 is disposed. The intermediate chamber 350 provides a separation between the pressure chamber 325 and the dampening chamber 375 and may be defined by a seal member 351 adjacent the pressure chamber 325 and a seal member 352 adjacent the dampening chamber 375. However, in an alternate embodiment, these chambers 325, 375 may be located immediately adjacent one another without the intervening intermediate chamber 350. Further, at the other side of the dampening chamber 375, an extension 311 of the ball screw 309 is shown exiting the chamber 375. It is this extension 311 which interfaces downhole portions of the milling tool 100 to maintain downward axial drive 400 for a milling application (see
Referring now to
As indicated above, the ball screw 309 threadably engages or interfaces the ball nut 377. Thus, as shown in
Referring now to
In addition to the thrust bearings 379, the mass and diameter of the ball nut 377, the radius of its rotations, the pitch of the ball screw 309, and other architectural features of the interfacing components may be configured to affect the degree of modulation provided by the depicted configuration. Fluid drag may also be a factor. Further, the piston head 305 and corresponding housing shape may be non-circular to discourage its rotation. Similarly, a key or other alternate device may be utilized to discourage rotation of the piston 300. By the same token, in an alternate embodiment, the ball nut 377 may be mounted in a non-rotatable manner, with modulated rotation of the piston 300 utilized to minimize or substantially eliminate ‘bounce’ as detailed herein.
Referring now to
In the embodiment shown, anchor arms 127 of an anchor housing 125 are driven into immobilizing engagement with a casing 480 or any other tubing defining the well 280. Thus, the actuator 101 is able to effectively drive the rotating bit 177 into the obstruction. Further, in the embodiment shown, a reamer or cutter 477 is provided adjacent the bit 177 to further aid in milling out and through the obstruction 285. As noted in detail above, such milling out and cutting through the obstruction 285 in this manner is achieved with enhanced drive consistency.
Referring now to
The rotating cutting implement, such as the above described bit, may then be driven into an obstruction with no more than the limited horsepower available over the wireline (see 550). Furthermore, by taking advantage of characteristics of an actuator of the tool, this downward force may be dampened as indicated at 560 and 570. Thus, as shown at 580, substantially bounce free obstruction removal may be achieved in a couple of hours. Indeed, this may even be the case where the obstruction is of a metal-based superalloy and in spite of having no more than about 5 horsepower available for the drilling, cutting, milling, etc.
Embodiments of rotatable downhole tools as described herein are configured to achieve substantially bounce free obstruction removal in spite of being deployed over wireline conveyance. That is, even though the power available for driving a cutting implement of the tool is generally no more than about 5 horsepower, the enhanced drive consistency allows for a practical and effective milling, drill-out, etc. Undue concern over cold working or other potential challenges where the obstruction is metal-based are also substantially eliminated. As a result, higher cost deployment alternatives, such as coiled tubing and drill pipe deployment may be avoided.
The preceding description has been presented with reference to presently preferred embodiments. Persons skilled in the art and technology to which these embodiments pertain will appreciate that alterations and changes in the described structures and methods of operation may be practiced without meaningfully departing from the principle, and scope of these embodiments. Regardless, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
This application is a continuation of co-pending U.S. patent application Ser. No. 13/316,239, filed Dec. 9, 2011, which claims benefit of, and claims priority to, U.S. Provisional Patent Application Ser. No. 61/422,881 filed Dec. 14, 2010, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61422881 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13316239 | Dec 2011 | US |
Child | 14830180 | US |