The present invention relates to a non-destructive test and inspection (NDT/NDI) used to inspect elongated test objects such as pipes, rods and bars, and more particularly to a phased array NDT/NDI system that rotates phased-array inspection probes around these test objects which are fed into the inspection system in a longitudinal direction during the inspection.
The test and examination of objects such as fabricated structures and processed materials, without damaging them, is now of immense importance in a wide range of industrial situations. The benefits obtained by inspecting the physical condition of an object to ensure that it meets its specifications are well known to manufacturers. Perhaps, most notable among these benefits are the improved efficiency and product quality gained by preventing the use of non-conforming material in a manufacturing process. Cylindrical structures, such as pipes and rods, and non-cylindrical materials, such as cast bars, comprise a large population of these objects.
Perhaps the most widely used NDT/NDI material inspection methodologies today utilize ultrasound (UT) and eddy current (EC) probes, both of which include single element and/or array probes. They are used to detect and characterize static defects or anomalies in metal, non-metal, or fiber composite structures in conjunction with rapid manufacturing processes.
One of the most difficult challenges encountered when inspecting these materials arises from the fact that the orientation of defects is typically unknown prior to inspection. Accordingly, conventional inspection probe systems are capable of scanning the test object at a plurality of incident inspection angles—such as, longitudinal, transverse, normal and oblique. This requirement for complex multi-angle inspection places a significant burden on system design, manufacturing, and maintenance.
The present disclosure is primarily concerned with two types of NDT/NDI systems that are commonly referred to as ‘pipe’ (or test object) and ‘bar’ inspection systems, such as the ones provided by the assignee of the present disclosure, i.e., the Olympus-NDT company. Furthermore, the present disclosure primarily describes exemplary inspection methodologies that employ phased-array or single element UT probes; however, it is not limited in this regard. Indeed, inspection methodologies that employ eddy current, acoustic, and other probe sensor technologies may also benefit from the teachings of the present disclosure.
The test objects for which these systems are used can be very long, e.g. 15 meters, with a wide range of diameters or cross sectional dimensions. For example, conventional pipe inspection systems can cover a range of diameters from 60 to 620 mm and wall thicknesses ranging from 4 to 50 mm. Conventional solid bar inspection systems can cover a range of diameters from 8 to 250 mm. Accordingly, the industrial setting where these products are produced and inspected must provide substantial material handling capabilities, factory floor space and other equipment resources.
Conventional pipe inspection systems (PIS) usually comprise:
A conventional bar inspection system (BIS) is comprised of most of the same elements of the PIS described above; however, they differ with respect to element “b)” in that the ‘plurality of test probe heads’ are instead disposed in a stationary manner to surround and be coupled to the perimeter of the test object while the test object is transported axially. Typically, two or more parallel plane probe head arrangements (cartridges) are used to provide maximum perimeter inspection coverage, each with a circumferential offset to cover the zone that the others do not.
It should be noted that the specific method utilized to supply the coupling medium, such as water, between the probe head and the surface to be inspected varies from system to system, such as UT, PIS and BIS. Specifically, a PIS employs a continuous local stream of water with laminar flow for each probe head, whereas a BIS employs a large tank of water in which the probe heads and the region of the test object to be inspected are submerged together. Furthermore, an entry and exit hole is placed on the opposing sides of the tank for the test object to be axially transported therein. As expected, considerable challenges are posed by the need to seal the interface between the tank holes and the moving test object in order to minimize water leakage and maintain adequate water volume.
The water tank method is used instead of the probe head longitudinal axis transport method when the UT methodology is used in line with another stationary inspection methodology, such as EC inspection. In this case, the test object is axially transported through the closely positioned and stationary UT and EC inspection systems, spending a portion of the test cycle time in both. Accordingly, this presents a practical limitation on axial movement of inspection probe heads.
Notable drawbacks associated with the conventional PIS can be attributed to the following characteristics of PIS systems.
a) Substantial and precise motion control requirements are placed on the system mechanics due to the need to transport and rotate large and heavy test objects, and transport major portions of the test system as well. These requirements demand a high initial investment, increased maintenance costs, greater design and assembly complexity, produce occasional performance anomalies (such as encoder slippage), large power consumption, and overall equipment wear and tear. There are also production delays associated to loading the test object on the inspection conveyor.
b) Adequate inspection coverage of the test object surface requires probe sensors operable to produce a plurality of incident inspection angles to deal with the fact that a flaw, such as a crack, may be orientated in the blind spot of a particular probe.
Accordingly, provisions must be made to ensure that each point on the outer surface of the inspected object is capable of being coupled to either: i) one probe with the ability to operate dynamically with multiple incident angles and/or apertures and/or ii) a large plurality of probes disposed in such a way as to achieve the same end.
The drawback associated with expedient ‘i’ above is that the motion of the test object has to stop, or be substantially slowed, to ensure that the probe couples the programmed range of incident angles at each point required on the inspected surface. Furthermore, the pulse repetition frequency (PRF) and speed of the data acquisition system needs to be quite high to ensure that the inspection throughput is not further compromised. Conversely, the inspection throughput can be increased, but only at the expense of reduced of inspection coverage, which results in lower inspection quality.
The drawback associated with expedient ‘ii’ above as compared to expedient ‘i’ above is primarily due to a large number of probes needed which require considerably more space due to the need for additional motion control apparatus and data acquisition units (DAU's). Furthermore, effecting motion control of the probes and the DAU's electronic enclosures is quite complex, including the need for cable management of probes, power, and external communications.
The most significant drawbacks associated with a conventional BIS are the same as those described above for the PIS, except that the test object is typically not rotated during inspection and the problems described above associated with the use of a water coupling tank are present.
Attempts to overcome the aforementioned drawbacks are exemplified by the teachings of U.S. Pat. No. 7,293,461 (Girndt) and U.S. Pat. No. 5,007,291 (Walters et al), both of which are summarized as follows.
Girndt teaches a method for ultrasonic inspection of tubular objects with a fixed set of parallel stationary circular arrays of composite transducers disposed and oriented to achieve thorough inspection coverage for the detection of anomalies, such as transverse, wall or longitudinal defects. To this end, Girndt employs composite transducers, which provide inspection area coverage greater than achievable with the same number of conventional non-composite transducers. Because many more non-composite transducers are required to cover the same area, the use of Girndt's arrangement of composite transducers reduces the number of channels needed for inspection of the tubular. More specifically, the primary advantages of composite transducer piezoelectric crystal material as compared to the conventional non-composite variety are: a) its face can be formed into a cylindrical or spherical shape that allows the UT beam to be focused without the need for an additional lens in front of the crystal face, and b) it provides a much higher excitation acoustic pulse for a given drive voltage which significantly improves the signal to noise ratio of the received echo.
The most significant drawbacks of Girndt's method involve a large number of transducers required for good inspection coverage as compared to a rotating probe system described below, and the difficulty to adapt to a wide range of test object diameters and wall thicknesses using a fixed set of composite transducers. As one might expect, a large number of transducers substantially increases system cost and complexity due to the number of DAU channels for signal processing. Furthermore, considerable changeover time is required to adapt Girndt's inspection system from one type of tubular geometry to another, which is beyond the inspection capabilities of a given set of composite transducers. Production system down time results in considerable productivity loss for the test object manufacturer. Furthermore, the test object manufacturer must invest in a separate set of curved face transducers for each test object size they produce that cannot be tested with the first set.
Walters et al. (U.S. Pat. No. 5,007,291) teaches a method for ultrasonic inspection of pipes that overcomes several aspects of the aforementioned background arts. The disclosure's use of multiple pairs of transducers (i.e. probes) disposed in linear, axial array for transmitting in each of the longitudinal and plurality of oblique directions increases the scan coverage for each revolution of transducers and therefore reduces the time required for an inspection.
In order to overcome the drawbacks associated with connecting a large number of transducer signals between the rotating and stationary parts of the inspection system, Walters teaches summing the response signals from all transducers in a “bank”, prior to providing them in analog form via a slip ring connection to a stationary amplifier module. Walters employs a plurality of transducer banks, each set to a fixed inspection incident angle. The transducers within each bank are mounted at a fixed angle to couple the UT pulse with the test object surface at one of a longitudinal, transverse, normal or oblique angle. In some cases, the transducers contained in the banks are complementarily oriented to face in either the forward or reverse clockwise rotational direction to maximize inspection coverage.
Although Walters' teachings overcome many of the aforementioned drawbacks of the background art, it falls short of providing easily and dynamically set, and wide variety of incident inspection angles and focal depths of the probe banks. In addition, as can be readily appreciated by those skilled in the art, the use of a slip ring connection for analog transducer signals poses problems associated with signal noise, limited bandwidth and a limited number of signal connections.
A review of the prior art can therefore be summarized that conventional ultrasound inspection systems as well as phased-array test object rotating inspection systems both have limitations in terms of the quality of the inspection, productivity, and cost effectiveness.
As phased-array technology is the current state of the art inspection method for performing full range inspection of test objects, it would therefore be beneficial to apply this technology to rotating head inspection systems thereby taking the advantages of providing inspections with higher resolution and higher through-put without the aforementioned disadvantages associated with conventional test object rotating system and rotating fixed incident angle probe inspection systems.
In view of the background art described above, a solution that more effectively addresses the noted drawbacks would be greatly appreciated by those in need of more efficient, reliable and cost effective inspection systems. The specific improvements required to accomplish this solution pertain to simplifying the motion control requirements for both the test object and inspection system, reducing the amount of floor space required for the system, allowing easy adaptation to a wide range of elongated test object sizes, and achieving optimal inspection performance by providing a means to allow a wide range of inspection probe incident angles and focal depths.
The invention disclosed herein aims to solve the problems related to cost, productivity and performance associated with phased-array inspection systems. More particularly, the present invention relates to a system intended to inspect test objects by rotating at least one phased array probe, obviating the need to rotate the test objects, which is particularly problematic when large objects are involved in inspection.
Accordingly, it is a general object of the present disclosure to provide a rotating phased-array inspection system employing one or more phased array rotating inspection heads moving in an encircling motion around the test object, when the test object is fed in longitudinal direction.
It is further an object of the present disclosure to make use of small and robust data acquisition units (DAUs), which can be installed directly on-board the rotating inspection head, in close proximity of the probes.
It is further an object of the present disclosure to make use of the advantages of wireless data transmission technology to transmit acquisition data from Data Acquisition Unit to an external dedicated application which is able to process the signal data, build the inspection displays, present the results and manage the alarm events in case of defects.
It is yet further another object of the present disclosure to enable inspections with the high precision and versatility provided by the phased-array technology, including wall thickness measurements and detection of longitudinal, transversal, oblique, and lamination defects by electronically scanning and steering of the acoustic beams.
It is yet further another object of the present disclosure to provide electricity, couplant fluid, and pressurized air to the rotating section of the rotating phased-array inspection system by means of a stationary source or local source on the rotating section.
These and other objects of the present disclosure can be realized with a test system for performing non-destructive testing of an elongated test object, wherein the test system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path. The test system may include phased-array probes of different types to optimize detecting faults or cracks in the test object which extend in different directions. Further, phased-array probes of a same type may be located so they are circumferentially juxtaposed to one another. The probe assembly conveyor may include a first, stationary bearing structure which rotatably supports a second, rotatable bearing structure, wherein the second bearing structure is configured to support the probe assembly.
a and 3b are diagrams showing the start and end position, respectively, of inspection of test object being passed though the rotating PA head units.
a is a schematic diagram showing the rotational drive assembly and the rotating coupling ring providing electrical, couplant and air supplies to the probe head units.
b is an elevation view of the coupling ring which is on one side (front) mounted to a stationary frame and on the other side (back) mounted to the rotating plate of the rotating phased-array inspection system.
c is a cross-sectional and enlarged detail view of a small section inside of the coupling ring shown in
a is a diagram showing how the PA beams are fired from PA probe apertures of a PA head unit covering the test object contour.
b is a diagram showing the helical scan pattern produced by the rotating phased-array inspection system using one PA probe with eight apertures.
c is a diagram showing the interlaced helical scan pattern produced by the rotating phased-array inspection system using two eight aperture probes disposed 180 degrees apart.
a and 9b are diagrams showing a perspective and plane view of an alternative embodiment employing a stationary couplant irrigation system.
It should be noted that terms such as “pipe(s)”, “tube(s)”, “bar(s)”, etc., are exemplarily used as the “test object(s)”, and therefore these terms are used interchangeably in the present disclosure. Further, “water” and “couplant”, as well as “air” and “gas”, are also herein used interchangeably.
It should be further noted that when referring herein to figure item numbers, a numeral without a letter suffix is meant to denote all items in the figure that bear the same numeral with a letter suffix. For example, ‘probe head unit’ 101 shown in
It should be understood that the subject titles used in the subsequent description are for the purpose of making the description more organized and easier to be followed. However, the scope of any content of the description under any subject title should not be construed with any restriction, and the content of the description, regardless of any subject title should be construed in its entirety.
Referring to
Conveyor 1004 (
Each of DAUs 102 in
Wireless data interface 123 is provided to manage all of DAUs 102 and the operation of the rotating PA system 1 simultaneously.
It should also be noted that DAUs 102 may employ transmitters only with operation control information provided from operating station 120 to DAUs 102 by means of slip ring interface 705 described later in relation to with
The management of DAUs 102 involves providing them with the appropriate inspection parameters (such as probe incident coupling angles), collecting data from each DAU, rebuilding the inspection results for on-screen displays, and emitting alarm events in case of defect detection.
Referring now to
Continuing with to
Probe holder 104 allows installation of PA probes 103 with accurate positioning with respect to the test object surface and test object length (probe height, probe angle). In the preferred embodiment, reliable contact of the probe holder 104 on the test object surface 110 is provided by carbides known to those skilled in the art. Probe holder 104 is designed with necessary wear protection, adapted for use in an industrial environment. Probe holder 104 is installed in mounting yoke 105 which provides the necessary degrees of freedom to adapt to irregularities of the test object during the inspection.
Continuing with
It should be appreciated that many existing practice and design for PA probe positioning and adjusting can be incorporated by the present invention for the purpose of engaging rotational PA head to test object, and the resulted embodiments are within the scope of the present invention.
As seen in
Existing practices such as using water wedges and applying substantially laminar flow of couplant in region between the outer surface of water wedge and the opposing surface of test object 110 are preferably employed for the present disclosure and the resulting embodiments are within the scope of the present invention.
Similarly as shown in
Each PA probe 103 and probe holder 104 can be chosen or positioned to fit for a specific inspection task which includes detection of longitudinal, transversal or oblique cracks, lamination defects, drilled holes (through holes), and wall thickness variation. For example, longitudinal defect detection can require installing PA probes 103 with an angle of typically 17 degrees between the PA passive direction on PA probe 103 and the test object surface. Transversal defect detection requires installing PA probes 103 parallel to the test object surface in both the active and passive directions while data acquisition unit 102 provides focal laws in order to create the desired angle for the acoustic beam. Oblique defect detection requires a combination of angular positioning of the PA probes 103 and steering the beam.
Reference is now made to
The activation and deactivation of pneumatic cylinders 106 (
Continuing with
The rotation speed of rotating plate 108, axial traveling speed of test object 110 and the coverage of PA probes 103 are partially defined as a function of the maximum pulse repeating frequency and acquisition rate of a specific setup of PA probe 103 and DAUs 102. The maximum linear and rotation speeds are calculated and set by dedicated computer program 122, thereby ensuring the inspection of the whole length of test object 110 except for dead zones 360 at the extremities of test object 110.
Reference is now made to
Moving to
In
During the scanning procedure described in step 600 (from step 307 to step 312), PA probes 103 are pulsing and receiving and DAUs 102 are acquiring inspection signals. DAUs 102 transmit data to dedicated computer program 122 via wireless coupling 121 and 126 (step 330). In the case of defect detection, an alarm is typically created in real time by DAUs 102 or by dedicated computer program 122 depending on the chosen alarm configuration (step 331).
Referring back to
It should be appreciated that it is within the scope of present disclosure that rotating PA head units alternatively may never stop rotating, while conveyor loads, transfers and unloads pipes 110. Object presence sensor 160 records and detects each of the starting and ending of each pipe, and the rotating PA system 1 continuously scans and records data corresponding to each pipe. It should also be noted that the object sensing function may be integrated within the PA inspection function.
Another important novel aspect of the present disclosure is the employment of working resource coupling ring 700 (in
Referring now to
Also shown in
As previously mentioned in
Referring now to
Pressurized air supply is provided to air interface 706, the output of which is provided to intake hole 706in of stationary part 700-s. Air intake hole 706in is aligned with circumferential air conduit 706conduit (
Similarly, couplant supply 707s is provided to couplant interface 707, the output of which is provided to intake hole 707in of stationary part 700-s. Couplant intake hole 707in is aligned with circumferential couplant conduit 707conduit within coupling ring 700. Liquid couplant is supplied to PA probe head unit 101 on rotating plate 108 through output hole 707out on rotational part 700-r.
It should be noted that seals or gaskets, not shown, are disposed between the stationary and rotating opposing circumferential walls associated with air conduit 706conduit and couplant conduit 707conduit. The seals are used to maintain the pressurized air and couplant within their respective conduits.
The compressed air on the rotational conduit 700r is then further transferred via 706out to working source distributor 125 (shown in
Continuing with
It should be noted that slip ring conductors 714a-d and 715a-d may be located instead on rotating part 700-r and stationary part 700-s respectively to achieve the same purpose. It should be noted that although not shown, slip ring conductors 715a-d are connected to probe head units 101 preferably by means of cabling provided by working source distributor 125, or alternatively may be connected at separate locations on rotating part 700-r that are in close proximity to probe head units 101.
Referring to
As shown in
Focal point of aperture 103ap-a, Sa, undergoes a pulse-receive measurement cycle when the 8 elements in aperture 103ap-a are applied a predetermined focal law. A complete linear scan is performed by successively applying focalized measurement cycles to aperture focal points Sa through Sn during scan cycle period Δt. Unit pipe contour travelling distance 801 shown in unit scan-area 802 is comprised of the measurements performed by each aperture (Sa through Sn) while PA probe 103 rotates a circumferential distance Δy. The axial movement of test object 110 during one linear scan cycle (Δt) is Δl.
The following description explains how to provide 100% full area scan, and how to adjust scan resolution. Referring to
In order to make sure that 100% of the pipe area is scanned, the following Eq. 1 has to be observed. It should be noted that the scan resolution is finite, meaning that it produces surface measurements spaced at a fixed pitch when axial velocity, Vpipe, and rotational speed, Vrotate, are constant.
Vpipe≧m·Lprobe/T=m·Lprobe·(rpm)/60 (m/s) Eq. 1
That is to say, the production speed is largely determined by the number of probes m and/or their rotating speed rpm.
When there is only one probe, the pipe traveling speed has to be one probe width Lprobe during one rotating cycle T in order to provide 100% of scan coverage. If the pipe is axially fed faster than one probe width during one rotating cycle T, there will be an un-scanned helical gap left behind the scanned area.
The circumferential scanning resolution, represented by the unit circumferential distance, Δy can be determined by Eq. 2:
Δy=Vaperture·Δt/n=2πR·rpm·Δt/n Eq. 2
That is to say, for a given linear scan speed, Vaperture, the circumferential scanning resolution is determined by the rotation speed (rpm). The higher the speed, the lesser the resolution (Δy). In order to maintain the circumferential scanning resolution at higher speeds for a given axial speed of test object 110 (Vpipe), Vaperture must be proportionately increased by increasing the measurement cycle pulse repetition frequency (PRF).
It can also been seen by Eq. 1 & 2, that the inspection throughput is a function of the total number of probes, apertures and the rotating speed, rpm.
It should also be noted in
In the forthcoming exemplary case only one probe 103a with only one set of apertures is used, in relation to
As can be seen in
The inspection system of the present disclosure will typically be used for test objects, such as pipes or rods, that are manufactured by means of an in line process—i.e. a linear arrangement of process steps, including the inspection. Accordingly, the efficiency of the manufacturing process is directly related to test object throughput. The aforementioned embodiment provides complete inspection coverage of the test object circumferential surface; however, the axial motion of the test object 110 must stop momentarily at the beginning of the inspection to accomplish this. If throughput is of paramount concern, test object 110 may enter and move axially through the inspection system in a continuous motion; however, this can only be done at the expense of incomplete inspection coverage on a small portion of the leading extremity of test object 110.
As shown in
The larger the number of probes 103 used for a given inspection incident angle, the faster the axial speed of test object 110 may be, while maintaining sufficient inspection surface resolution.
It should be appreciated that the present invention is not limited to the use of four PA probe head units on a single rotating plate. Other configurations are possible such as using two PA probe head units positioned at 0 and 180 degrees on rotating plate 108, or with three PA probe head units at 0, 120, 240 degrees. It must also be recognized that one probe head unit can also be used, typically with a counterweight opposite the probe head unit on the rotating plate.
Referring now to
It should be appreciated that the above descriptions and drawings disclose illustrative embodiments of the invention. Given the benefits of this disclosure, those skilled in the art will appreciate that various modifications, alternate constructions, and equivalents may also be employed to achieve the advantages of the invention.
Although the present invention describes a wireless transmitter/receiver 126 integrated into each data acquisition unit, it must be recognized that a wireless transmitter/receiver for each DAU could be external to the DAUs. It must also be recognized that all of the data acquisitions could potentially share a single wireless transmitter/receiver on the rotating disc.
It must also be recognized that although the preferred embodiment stops the test object at the beginning and end of each inspection to optimize the inspections results at the extremities of the test objects, the present invention is not limited in this respect. Continuous translation movement of the test objects on a conveyor can be applied to the present invention.
It should be noted that the wireless connection 121 described in the present disclosure can include the usage of many types of transmission and reception technologies and communication protocols to achieve signal communication between stationary user operating station 120 and rotating probe assembly 100, including but not limited to radio frequency, microwave, acoustic, infra-red and other optical technologies. Furthermore, many standard or private wireless protocols, such as the Internet protocol (TCP/IP), may be employed. It should also be noted that it is preferable to use private transmission frequency bands due to the slower latency inherent in public frequency bands. For example, conventional public frequency bands used by wireless technology employed in personal computers can have transmission-reception latency in the order of milliseconds due to a large number of users vying for the same public frequency band. Accordingly, the latency period of private frequency bands is much shorter due to a much smaller population of users.
Although the description of the embodiments of the present disclosure is provided for an application using phased-array ultrasonic probes to test cylindrically shaped test objects, its application is not limited in this regard. Indeed, a broad range of multi-element probe sensor arrays may be employed to achieve the benefits of the present disclosure. Examples of such probes are eddy current arrays (ECA) and acoustic probes. It should also be noted that the teachings of the present disclosure may also be applied to single element sensor probes. Furthermore, test objects with non-round axial cross sections, such as oval and polygons, may also be tested.
The following design variations of the preferred embodiment should be recognized by those skilled in the art to be within the scope of the present disclosure. The detailed description of the following alternative embodiments focuses on the portion of the embodiments differing from the preferred embodiment, and should be construed complementarily to the preferred embodiment.
Referring to
The charging and monitoring device for battery 109b may be located within electrical regulator/distributor 109c or battery 109b. Furthermore, battery 109b (re-chargeable or non-rechargeable) may be used in a stand alone manner without the need for generator 109 or electrical regulator/distributor 109c as long as a means is provided to connect the battery 109b to probe head unit 101 requiring its power. More than one battery may be used, each preferably placed in proximity to the device or devices it powers.
It should be appreciated that existing generators or alternators can be repurposed for the present invention, providing electric power source for the presently disclosed rotating PA system.
In lieu of providing pressurized air for pneumatic cylinder 106 in the manner described above for the preferred embodiment, an on-board air compressor is optionally disposed on rotating plate 108 may be used.
Referring to
Further alternatively, a pressurized vessel 113 can be utilized so that compressor 112 can pressurize vessel 113 which would provide pressurized air to coupling ring 700. It should also be noted that the mounting of only pressurized vessel 113 on rotating plate 108 is also sufficient to provide pressurized air to working source distributor 125. In this case, vessel 113 would be filled with compressed air by attaching a stationary compressor during the sessions when rotating plate 108 is stopped.
In lieu of using earlier described couplant ring 700 and couplant interface 706 shown in
Examples of couplant dispersion are shown for dispersion nozzles 901a and 901b (
It should be noted that dispersion nozzles 901 are not confined to direction as shown in spraying couplant 904 or a fixed pattern. Indeed, the dispersion direction and pattern may be adjusted manually or dynamically to optimize the laminar flow of couplant on surface 902 of test object 110.
As shown in
Continuing with
The preceding description of the preferred embodiment indicates a preference to have test object 110 to be stopped at its starting and end of a test object, in order to be scanned one or more times of the extremities to ensure that the entire circumferential surface undergoes a complete linear scan as shown in
Referring collectively to
Continuing to refer to
The weight is measured at preferably four 90 degree rotational intervals, after which rotating plate 108 is rotated to the location where the maximum weight was measured. Then, screw 1101 is turned counterclockwise, for example, a predetermined amount to displace weight 1103 radial outward. Next, balance sensor 717 indicates the new weight and then plate 108 is rotated and the weighed again at 90 degree intervals as described above. This process continues until a weight measurement inflection point occurs—meaning that sensor 717 indicates, for example, an increase in the measured weight after having indicated for the prior weighing cycle a decrease in the measured weight. The weighing process may further continue one or more times by adjusting screw 1301 to a lesser degree resulting in a smaller weight increment change. The center of mass balancing process ends when the last weight measurement inflection point occurs with the finest displacement of weight 1103.
The exemplary center of mass balancing process described above may be implemented in a number of different ways by those skilled in the art.
More than one rotating probe may be longitudinally disposed at a given circumferential position on rotating plate 108 and be operated in unison. When there are two probes disposed along axial line with their linear array aperture spans contiguous to each other, the pipe can travel two probe lengths during one rotating cycle time T. If the pipe is fed with an axial move faster then 2Lprobe/T, there will be un-scanned helical gap left behind the scanned area.
Consequently, when there are n probes dedicated to the same type of defect or wall thickness inspection disposed along axial line contiguous to each other, the pipe can travel n probe lengths during on rotating cycle time T.
That is to say, in order to achieve 100% scan coverage, the longitudinal speed that the pipe is fed is constrained by the following equation Eq. 3, given m as the total number of probes disposed contiguous to each other axially,
Vpipe·T/Lprobe=Vpipe·60/(Lprobe·rpm)≦m or
m≧Vpipe·T/Lprobe=Vpipe·60/(Lprobe·rpm) Eq. 3
The exemplary helical scans shown in
Although the present invention has been described in relation to particular exemplary embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention not be limited by the specific disclosure.
This application claims the benefit and priority of U.S. Provisional patent application Ser. No. 61,324,993 filed Apr. 16, 2010 entitled ROTATING ARRAY PROBE NON-DESTRUCTIVE TEST SYSTEM FOR ENCIRCLED PIPE OR BAR INSPECTION, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61324993 | Apr 2010 | US |