The invention relates generally to brackets used in constructing building frames, and more particularly to a rotating bracket assembly that can be used for both collapsible and permanent building-frame construction.
At its most basic level, frame construction involves the joining of two structural members. Typically, the two structural members are elongated members joined together with an angle being formed therebetween. Joining of the two structural members is typically accomplished on-site using fasteners (e.g., nails, screws, etc.) or brackets and fasteners. In either case, the two structural members are fixed in their relationship to one another. It is well known in the art that such on-site construction is prone to human error. To combat on-site human error, some frame construction for new dwellings is being done off-site in controlled environments. For example, wall frames and roof trusses can be manufactured in a controlled factory environment and then shipped to a construction location. However, manufactured framing assemblies are large and bulky owing to the substantial air space between structural members.
Some frame construction must be done on-site. Room additions or home expansion projects usually require adding walls, floors, a roof(s), and securing them to existing construction. In order to add a roof for a new room to an existing structure, the shingles must be removed and the plywood covering the trusses removed so that additional trusses can tie into the existing trusses correctly. The prior art exposes the interior of the dwelling to the elements, and adds time to the project. Exposure of the interior of the dwelling to wind, rain, and snow can damage the dwellings walls, insulation, electrical circuits or any exposed appliances.
Accordingly, it is an object of the present invention to provide a bracket that can be used in frame construction.
Another object of the present invention is to provide a bracket that can be used for both off-site and on-site framing.
Still another object of the present invention is to provide a bracket for frame construction that reduces the amount of roof demolition required when adding on to an existing roof.
Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
In accordance with the present invention, a rotating bracket assembly comprises first and second members. The first member defines a first channel having opposing sides coupled to a common base. Similarly, the second member defines a second channel having opposing sides coupled to a common base. The first member is nested within the second member with each of the opposing sides of the first member being adjacent to one of the opposing sides of the second member. The adjacent opposing sides are hingedly coupled to one another so that the first member can freely rotate 360° relative to the second member to achieve a plurality of rotational positions. The first member and second member have holes formed therethrough in each of their opposing sides and common base. A first plurality of holes in the opposing sides of the first member at least partially align with a second plurality of holes in the opposing sides of the second member for each of the rotational positions.
Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:
The invention consists of two separate components 101 and 201 that can be made of made of sheet metal (e.g., coiled sheet steel), a rigid plastic, or a rigid composite, the choice of which is not a limitation of the present invention. The two components are joined together during the manufacturing process to form one rotating bracket assembly. The joining process is completed by, for example, bending features of one component to trap features of another component as will be described further below.
Feature 101-8 is angular position indicia and can be printed, formed by engraving punches during the stamping process, etc. This feature is for convenience and does not affect the function of the invention. This feature will be explained further below.
Distributed concentrically around hole 101-10 and beneath hole 101-10 are a plurality of arcuate slots 101-9 that extend all the way through both sides of component 101. The number and size of each slot 101-9 can be other than shown without departing from the scope of the present invention.
After bending (i) the sides of component 201 over the sides of component 101 and (ii) tabs 101-11, assembly 300 of the invention is completed. As a result of such construction, component 101 can rotate 360° in either direction about coincident axes 102/202 (as indicated by rotational arrow 302) while remaining coupled to component 201.
At any rotational position of component 101, a number of holes 201-11 and the upper portion of vertical slots 201-9 will be aligned with some portion of arcuate slots 101-9 distributed about hole 101-10. By way of illustrative examples, one such rotational position is shown in
The present invention is not limited to the hole configurations described above. For example, referring now to
In this embodiment, straight slotted holes 111-9 are arranged about hole 111-10 and formed through each side of component 111. Similarly, straight slotted holes 211-9 are arranged about hole 211-10 and formed through each side of component 211. The number and size/length of each slotted hole is not a limitation of the present invention. Typically, the slotted holes will be the same size and be equal in number for each of components 111 and 211.
Slotted holes 111-9 and 211-9 are positioned such that, when assembly 400 is formed (i.e., with tabs 111-11 on component 111 engaging the edge of hole 211-10 of component 211), each of slotted holes 211-9 will be (i) over laid with at least one of slotted holes 111-9, and (ii) angularly disposed with respect to the overlaid one(s) of holes 111-9. As a result of this construction, rotating bracket assembly guarantees a plurality of aligned holes 111-9/211-9 will be evenly distributed about aligned holes 111-10/211-10.
The rotating-bracket assemblies of the present invention can be used in a variety of frame construction applications to include on-site and off-site constructions. On-site applications can include new-construction, renovations, and construction of additions. Off-site construction can include manufactured framing assemblies ready for on-site assembly as well as manufactured framing assemblies in a collapsed state that must be expanded and “locked” once on-site.
Several applications of the present invention will be described herein to illustrate the usefulness thereof. These applications will be described with reference to rotating bracket assembly 300. However, it is to be understood that the same applications could be realized using assembly 400.
For each use of assembly 300, holes 101-7, 101-13 and/or 201-13 can be used to fixedly attach assembly 300 to framing material (e.g., dimensional lumber, engineered wood members, metal members, etc.) using nails or screws. Note that such attachment does not impede rotation of component 101 with respect to component 201. Thus, even after assembly 300 is attached to the framing material, assembly 300 provides for rotational adjustment of the attached framing material. Such adjustment allows the framing material to be collapsed for compactness and allows the framing material to be angularly positioned for a particular application.
Once the designed angular position between the framing material is achieved, fasteners can be inserted through the aligned portions of slots 201-9/holes 201-11 with slots 101-9 to fix the angular position between the framing material. Specifically, fasteners (e.g., nails, screws, etc.) are inserted through the aligned holes and into the framing material from both sides of assembly 300. Since the holes/slots on both sides of assembly 300 are aligned, it may also be possible to use long fasteners that extend all the way across assembly 300 and through the framing material captured therein. Since attachment of assembly 300 to the framing material will occur at positions around the coincident axes 102/202 of rotation and on both sides of the framing material, structural loads are evenly distributed throughout assembly 300.
Referring now to
Furthermore, the existing roof may be have been constructed at one angle from horizontal while the new roof may need to be constructed at another angle. The present invention solves all of these problems as the common base of component 201 is attached to existing members 2 and 3 using fasteners 1002 that pass through holes 201-13 (not visible in
When existing shingles are removed from an existing roof to expose plywood member 2, the locations of existing trusses under plywood member 2 will be apparent from the nail pattern connecting the two. Thus, positioning and securing assembly 300 over an existing truss 1 without removal of plywood member 2 is straightforward.
Additional fasteners 1000 can be inserted through holes 101-7 to secure and support structural member 3 in component 101 while component 101 is still able to rotate. Once component 101/member 3 are rotated to their desired angular position, slots 201-9/holes 201-11 and some portions of 101-9 will be aligned and surround aligned holes 101-10 and 201-10. Fasteners may be placed through aligned ones of these slots and holes where the fasteners will engage structural member 3 to further secure assembly 300 to member 3 and stop rotation of component 101 and member 3 as desired.
When building the new addition, component 201 would be secured to existing members as described above. Structural member 3 would be placed into component 101. This will allow component 101 to rotate while supporting the new structural member without fasteners being used. Thus, the carpenter, homeowner, handyman, etc., is free to work on the positioning, measuring, nailing, etc., of the other end of structural member 3. With the invention secured to structural member 1, the positioning of the other end of the new member 3 can be established to determine the cut angle for new member 3.
In either case, component 201 is attached to structural member 4 using fasteners (not shown) that pass through component 201 into member 4. Structural member 5 is pre-cut to its desired angle and attached to component 101 in ways described previously. Provided no fasteners are used in the aligned slots 201-9/holes 201-11 and holes 101-9, structural member 5 can be collapsed to a more compact relationship with structural member 4 as shown in
Once on-site, the structural members are simply rotated to their pre-engineered positioned and locked in place by inserting fasteners through assembly 300 and into structural member 5 as described above. The ability to rotate and collapse framing material in a designed configuration allows for a roof or wall to be collapsed when not needed to save space, and rotate into a functional position when the need arises.
The present invention is not limited to the specific embodiments described herein. For example, although components 101 or 111 are illustrated as open channels, the present invention could also be practiced if these components defined a closed channel sized to receive a certain size of framing material. The “top” of such a closed channel could be permanently fixed to both sides or just one side of the component in which case it could be bent to form the top of the channel once the framing material was placed therein.
The advantages of the present invention are numerous. The rotating bracket assembly can be used in off-site and on-site framing applications. The assembly allows frame structures to be engineered and assembled in a collapsed form to simplify delivery and ultimate on-site building fabrication. On-site framing is also improved as the rotating bracket assembly acts as a “third hand” to pre-position framing material to facilitate proper cutting thereof. Renovation/addition projects are simplified by reducing the amount of demolition required to tie a new frame structure into an existing frame structure.
Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.
This is a continuation-in-part of co-pending application Ser. No. 11/455,395, filed Jun. 19, 2006. Pursuant to 35 U.S.C. §120, the benefit of priority from co-pending application Ser. No. 11/455,395 is hereby claimed for this application.
Number | Date | Country | |
---|---|---|---|
Parent | 11455395 | Jun 2006 | US |
Child | 12152709 | US |