This disclosure relates in general to fluid drilling equipment and in particular to a rotating control device (RCD) to be used for drilling operations. More specifically, embodiments of the present disclosure relate to a RCD having a multiple seal assembly that increases bearing performance and life by ensuring a reliable seal from wellbore pressure.
In drilling a well, a drilling tool or “drill bit” is rotated under an axial load within a bore hole. The drill bit is attached to the bottom of a string of threadably connected tubulars or “drill pipe” located in the bore hole. The drill pipe is rotated at the surface of the well by an applied torque which is transferred by the drill pipe to the drill bit. As the bore hole is drilled, the hole bored by the drill bit is substantially greater than the diameter of the drill pipe. To assist in lubricating the drill bit, drilling fluid or gas is pumped down the drill pipe. The fluid jets out of the drill bit, flowing back up to the surface through the annulus between the wall of the bore hole and the drill pipe.
Conventional oilfield drilling typically uses hydrostatic pressure generated by the density of the drilling fluid or mud in the wellbore in addition to the pressure developed by pumping of the fluid to the borehole. However, some fluid reservoirs are considered economically undrillable with these conventional techniques. New and improved techniques, such as underbalanced drilling and managed pressure drilling, have been used successfully throughout the world. Managed pressure drilling is an adaptive drilling process used to more precisely control the annular pressure profile throughout the wellbore. The annular pressure profile is controlled in such a way that the well is either balanced at all times, or nearly balanced with low change in pressure. Underbalanced drilling is drilling with the hydrostatic head of the drilling fluid intentionally designed to be lower than the pressure of the formations being drilled. The hydrostatic head of the fluid may naturally be less than the formation pressure, or it can be induced.
Rotating control devices provide a means of sealing off the annulus around the drill pipe as the drill pipe rotates and translates axially down the well while including a side outlet through which the return drilling fluid is diverted. Such rotating control devices may also be referred to as rotating blow out preventers, rotating diverters or drilling heads. These units generally comprise a stationary housing or bowl including a side outlet for connection to a fluid return line and an inlet flange for locating the unit on a blowout preventer or other drilling stack at the surface of the well bore. Within the bowl, opposite the inlet flange, is arranged a rotatable assembly such as anti-friction bearings which allow the drill pipe, located through the head, to rotate and slide. The assembly includes a seal onto the drill pipe which is typically made from rubber, polyurethane or another suitable elastomer.
For offshore application on jack-up drilling rigs or floating drilling rigs the rotating control device may be in the form of a cartridge assembly that is latched inside the drilling fluid return riser. In this case the side outlet may be on a separate spool or outlet on the riser.
The demands made on modern RCDs are pushing the envelope and limit of what is achievable with elastomeric seal solutions. The trend is for RCDs to be able to provide effective sealing at higher pressures and higher rotational speeds. Advances in the drill string rotation equipment like top drives, used to rotate the drill string and hence the drilling bit, are allowing revolution rates as high as 300 rpm. There is a desire to be able to use RCDs at much higher pressures during well control operations to enable drill string rotation so as to avoid getting stuck which is a common problem. These types of operations could be carried out if the dynamic rating of the seal solution was comparable to the static housing pressure rating of the RCD which is typically 5000 psi for the high-pressure variants. Furthermore, there is a need to increase the service interval for changing out the seal assembly which is typically failing in less than 200 hours. Premature seal assembly failure leads to drilling fluid invasion of the bearing assembly with consequent costly failure.
The problem is being continuously addressed by novel ways of arranging the seals such as disclosed in U.S. Pat. No. 9,284,811 assigned to Schlumberger Technology Corporation. Another method is to force lubricate the bearings and seals of which there are many examples a recent one being the U.S. Pat. No. 10,066,664 assigned to Black Gold Tools, Inc.
Most modern high-pressure RCDs use elastomeric lip seals or hydrodynamic film seals with the most common ones in use being the wave seals called KALSI™ seals, marketed by Kalsi Engineering, Inc. of Sugar Land, Tex. USA. The only way to improve the performance of seal assemblies using these types of seals is by reducing the pressure and velocity (PV) experienced by such seal assemblies. PV value is a seal design number calculated by the Pressure in psi multiplied by the surface Velocity of the application. Taking a typical rpm of 200, a typical RCD mandrel diameter of 9 inches we get a surface Velocity of about 471 sfpm. Considering the modern PV limit of lip seals is around 250,000 it means that it gets difficult to achieve sealing pressures in excess of 500 psi which gives a PV of 471 multiplied by 500 which is equal to 235,500 so close to the PV limit of a lip seal.
Such improvements are the subject of recent applications US20170114606A1 and US20170167221A1, both by Weatherford Technology Holdings. '606 discloses a stepped pressure concept to lower the pressure differential across the seals, thus reducing the PV per seal. The other application '221 discloses a split seal assembly that reduces the individual velocity across each seal by reducing the ratio of rpm by use of independently rotating rings which also reduces the total PV seen per seal. Additionally, these design use methods for pressurizing the internal lubrication fluid for the bearings so as to provide reduced pressure differentials. The drawback of using the Kalsi type seal solution is that they must continuously weep to lubricate the interface and that they are harder seals than lip seals leading to wear on the rotating mandrel which eventually also causes leaks.
Also, these recent seal assemblies involving multiple components are labor intensive to service as they need to be disassembled piece by piece and rebuilt. There is a need for having a multiple seal solution that can be simply replaced as a cartridge, using the same type and diameter of seal which can be easily adapted to the pressure requirements by staging the pressure experienced by each seal so that each seal operates within the PV limits of its design. Such a solution would use a lip type seal which does not allow any leakage when operating under the recommended PV conditions.
A recent staged pressure seal solution for dual drill pipe is disclosed in U.S. Pat. No. 8,720,543 assigned to Reelwell A S. This does not allow for a cartridge replacement of the seal assembly.
It is an object of the present invention to provide a pressure staged lip seal assembly for an RCD application with improved reliability under the difficult operating conditions for a high-pressure RCD. The advantageous design houses all of the seals and pressure staging components in a single cartridge that is easily replaceable for quick servicing.
The present disclosure includes a rotating control device with a seal cartridge having multiple, identical, common diameter lip seals with pressure staging in a single cartridge assembly that can be easily installed and removed without dismantling the main mandrel and bearings. Advantageously, a series pressure staging mechanism is disclosed.
According to one embodiment of the present disclosure, a rotating control device is provided for use in a drilling system, wherein the rotating control device comprises a non-rotating tubular RCD housing enclosing an elongate passage. A mandrel extends along the elongate passage and has an axis and an end on which is mounted an elastomeric stripper which is located in the RCD housing and which is configured to seal against and rotate relative to the RCD housing about said axis with a drill pipe located inside the mandrel and extending along said axis. A seal assembly is configured to provide a substantially fluid tight seal between the RCD housing and the mandrel and has a seal support housing with first and second seals which seal against an exterior surface of the mandrel. The first and second seals are spaced from one another generally parallel to the axis of the mandrel so that there is a space around the mandrel between the first and second seals. The first seal has a first side which is exposed to fluid at a pressure greater than or equal to the pressure of fluid in the RCD housing and a second side which is exposed to fluid in the space between the seals. The second seal has a first side which is exposed to fluid pressure in the space between the seals and a second side which is exposed to fluid pressure at the exterior of the RCD housing. A pressure stepping mechanism pressurizes fluid to a pressure which is intermediate between the pressure at the first side of the first seal and the pressure at the second side of the second seal and supplies said fluid to the space between the two seals. The pressure stepping mechanism is integral with or secured to the seal support housing.
The seal assembly may comprise at least one intermediate seal which is located in the space between the first seal and the second seal and divides the space around the mandrel between the first seal and the second seal into a plurality of spaces which are spaced from one another generally parallel to the axis of the mandrel. The at least one intermediate seal has a first side which is exposed to fluid pressure in the space between it and the first seal or its adjacent seal closest to the first seal and a second side which is exposed to fluid pressure in the space between it and the second seal or its adjacent seal closest to the second seal. The pressure stepping mechanism is configured to supply fluid to each space between adjacent seals, wherein the pressure of fluid supplied to the space between the first seal and its adjacent seal is lower than the pressure of fluid in the RCD housing. The pressure of fluid supplied to the space between the second seal and its adjacent seal is greater than the fluid pressure at the exterior of the RCD housing but lower than the pressure of fluid supplied to the space between the first seal and its adjacent seal. The fluid pressure in all the spaces between adjacent seals decreases from the space adjacent the first seal to the space adjacent the second seal.
The pressure stepping mechanism may be configured to adjust the pressure of fluid supplied to each of the spaces between adjacent seals such that the pressure differential from the first side to the second side of each seal is substantially the same.
The pressure stepping mechanism may comprise, for each space between adjacent seals, a cylinder containing a piston which divides the cylinder into an inlet volume and an outlet volume, wherein the outlet volume is in fluid communication with its respective space between adjacent seals. The piston has an inlet face which is exposed to fluid pressure in the inlet volume and an outlet face which is exposed to fluid pressure in the outlet volume, wherein the area of the inlet face is less than the area of the outlet face.
The or each cylinder of the pressure stepping mechanism and the fluid connections to the inlet and outlet volumes of the or each cylinder may be integral with or secured to the seal support housing.
The cylinders of the pressure stepping mechanism may be identical in external dimensions.
The pressure stepping mechanism may be configured such that the inlet volume of each cylinder is in fluid communication with fluid in the RCD housing or with fluid at the same pressure as fluid in the RCD housing or with fluid at the first side of the first seal.
The inlet volume of the or each cylinder may be protected from direct contact with the fluid in the RCD housing by a diaphragm.
The seal assembly may comprise at least one intermediate seal which is located in the space between the first seal and the second seal and divides the space around the mandrel between the first seal and the second seal into a plurality of spaces which are spaced from one another generally parallel to the axis of the mandrel. The at least one intermediate seal has a first side which is exposed to fluid pressure in the space between it and the first seal or its adjacent seal closest to the first seal and a second side which is exposed to fluid pressure in the space between it and the second seal or its adjacent seal closest to the second seal. The pressure stepping mechanism is configured to supply fluid to each space between adjacent seals, wherein the pressure of fluid supplied to the space between the first seal and its adjacent seal is lower than the pressure of fluid at the first side of the first seal. The pressure of fluid supplied to the space between the second seal and its adjacent seal is greater than the fluid pressure at the exterior of the RCD housing but lower than the pressure of fluid supplied to the space between the first seal and its adjacent seal. The fluid pressure in all the spaces between adjacent seals decreases from the space adjacent the first seal to the space adjacent the second seal, and the ratio of the area of the inlet face to the area of the outlet face of each piston decreases moving from the piston controlling the supply of pressurized fluid to the space adjacent the first seal to the piston controlling the supply of pressurized fluid to the space adjacent the second seal.
The seal assembly may comprise at least one intermediate seal which is located in the space between the first seal and the second seal and divides the space around the mandrel between the first seal and the second seal into a plurality of spaces which are spaced from one another generally parallel to the axis of the mandrel. The at least one intermediate seal having a first side which is exposed to fluid pressure in the space between it and the first seal or its adjacent seal closest to the first seal and a second side which is exposed to fluid pressure in the space between it and the second seal or its adjacent seal closest to the second seal. The pressure stepping mechanism being configured to supply fluid to each space between adjacent seals, wherein the pressure of fluid being supplied to the space between the first seal and its adjacent seal is lower than the pressure of the fluid at the first side of the first seal. The pressure of fluid supplied to the space between the second seal and its adjacent seal is greater than the fluid pressure at the exterior of the RCD housing but lower than the pressure of fluid supplied to the space between the first seal and its adjacent seal. The fluid pressure in all the spaces between adjacent seals decreases from the space adjacent the first seal to the space adjacent the second seal, wherein the pressure stepping mechanism has a first cylinder which controls the supply of pressurized fluid to the space adjacent the first seal. The inlet volume of the first cylinder is in fluid communication with fluid in the RCD housing or with fluid at the same pressure as fluid in the RCD housing or with fluid at the first side of the first seal, whilst the inlet volumes of all other cylinders are each in communication with the outlet volume of the cylinder controlling the supply of pressurized fluid to the space adjacent to its respective space and closer to the first seal (its preceding cylinder) so that the pressure in the inlet volume of each of the other cylinders is substantially the same as the pressure in the outlet volume of its preceding cylinder.
For each cylinder other than the first cylinder, a fluid flow passage may be provided between the inlet volume and the outlet volume of its preceding cylinder.
The inlet volume of the first cylinder may be protected from direct contact with fluid in the RCD housing by a diaphragm.
The pressure stepping mechanism may comprise a supply cylinder having a supply piston which divides the cylinder into an inlet volume and an outlet volume, wherein the inlet volume is in fluid communication with fluid in the RCD housing, and the outlet volume is in fluid communication with the inlet volume of the first cylinder. The supply piston has an inlet face which is exposed to fluid pressure in the inlet volume and an outlet face which is exposed to fluid pressure in the outlet volume, wherein the area of the inlet face is substantially the same as the area of the outlet face.
The rotating control device may further comprise a trash seal which seals against an exterior surface of the mandrel and is adjacent to but spaced from the first side of the first seal, so as to form a space around the mandrel between the trash seal and the first seal. The trash seal has a first side which is exposed to fluid in the RCD housing and a second side which is exposed to fluid in the space between it and the first side of the first seal.
The trash seal may be a non-pressure isolating seal.
The trash seal may be a pressure isolating seal, and the pressure stepping mechanism includes means for supplying fluid to the space between the trash seal and the first seal at a pressure which is the same or greater than the fluid in the RCD housing.
The pressure stepping mechanism may include a trash supply cylinder having a trash supply piston which divides the cylinder into an inlet volume and an outlet volume, wherein the inlet volume is in fluid communication with fluid in the RCD housing, and the outlet volume is in fluid communication with the space between the trash seal and the first seal. The trash supply piston has an inlet face which is exposed to fluid pressure in the inlet volume and an outlet face which is exposed to fluid pressure in the outlet volume, wherein the area of the inlet face is substantially the same as the area of the outlet face.
The pressure stepping mechanism may include a trash supply cylinder having a trash supply piston which divides the cylinder into an inlet volume and an outlet volume, wherein the inlet volume is in fluid communication with fluid in the RCD housing, and the outlet volume is in fluid communication with the space between the trash seal and the first seal. The trash supply piston has an inlet face which is exposed to fluid pressure in the inlet volume and an outlet face which is exposed to fluid pressure in the outlet volume, wherein the area of the inlet face is larger than the area of the outlet face.
The seals may seal against a seal sleeve which is mounted on the exterior of the mandrel and fixed for rotation with the mandrel, wherein the seal sleeve is removable from the mandrel.
The rotating control device may further comprise a seal adjustment mechanism which is operable to move the seals relative to the seal sleeve generally parallel to the axis of the mandrel without detaching either the seal sleeve from the mandrel or the seal assembly from the RCD housing.
The seal support housing may be secured to the RCD housing so that rotation of the seal support housing relative to the RCD housing is substantially prevented.
Each seal may be located in a separate seal carrier within the seal support housing, wherein each seal carrier is provided with a pressure isolating seal which provides a substantially fluid tight seal between the seal carrier and the seal support housing.
The rotating control device may further comprise a bearing assembly which supports the mandrel for rotation in the RCD housing, wherein the seal assembly is arranged to isolate the bearing assembly from pressurized fluid in the RCD housing and engages with the mandrel between the stripper and the bearing assembly.
According to another embodiment of the present disclosure, a rotating control device for use in a drilling system provides a non-rotating tubular RCD housing enclosing an elongate passage. A mandrel extends along the elongate passage and has an axis and is configured in use to rotate relative to the RCD housing about said axis. A seal assembly is configured to provide a substantially fluid tight seal between the RCD housing and the mandrel, wherein the seal assembly comprises a seal support housing with first and second seals which seal against an exterior surface of the mandrel. The first and second seals are spaced from one another generally parallel to the axis of the mandrel so that there is a space around the mandrel between the first and second seals, wherein the first seal has a first side which is exposed to fluid at a pressure greater than or equal to the pressure of fluid in the RCD housing and a second side which is exposed to fluid in the space between the seals. The second seal has a first side which is exposed to fluid pressure in the space between the seals and a second side which is exposed to fluid pressure at the exterior of the RCD housing. A pressure stepping mechanism pressurizes fluid to a pressure which is intermediate between the pressure at the first side of the first seal and the pressure at the second side of the second seal and supplies the fluid to the space between the two seals, wherein the pressure stepping mechanism is integral with or secured to the seal support housing and the seals, seal support housing, and pressure stepping mechanism are located inside the RCD housing and are releasably attached to the RCD housing and can be removed from the RCD housing together as a single unit.
The seals may seal against a seal sleeve which is mounted on the exterior of the mandrel and fixed for rotation with the mandrel, wherein the seal sleeve is detachable from the mandrel for removal from the RCD housing with the seals, seal support housing, and pressure stepping mechanism.
Each seal may be located in a separate seal carrier within the seal support housing, wherein each seal carrier is provided with a pressure isolating seal which provides a substantially fluid tight seal between the seal carrier and the seal support housing. The seal support housing, seal carriers, and pressure stepping mechanism are releasably attached to the RCD housing and can be removed from the RCD together as a single unit.
The rotating control device may further comprise a bearing assembly which supports the mandrel for rotation in the RCD housing, wherein the seal assembly is arranged to isolate the bearing assembly from pressurized fluid in the RCD housing, and the seals, seal support housing, and pressure stepping mechanism are releasably attached to the RCD housing and removable from the RCD housing together as a single unit whilst leaving the mandrel and bearing assembly in place in the RCD housing.
The RCD housing may comprise an upper housing and a lower housing, and the rotating control device may comprise a locking mechanism wherein the upper housing may be locked to the lower housing. The locking mechanism is operable to release the upper housing from the lower housing, wherein the seals, seal support housing, and pressure stepping mechanism are releasably attached to the upper housing. In this case, the bearing assembly may be located in the upper housing. Moreover, the lower housing may be provided with a mounting spool, which may comprise a flange, wherein the lower housing may be secured to another part of a drilling system such as a blowout preventer or riser.
According to yet another embodiment, a rotating control device for use in a drilling system provides a non-rotating tubular RCD housing enclosing an elongate passage. A mandrel extends along the elongate passage and has an axis and is configured in use to rotate relative to the RCD housing about said axis. A bearing assembly supports the mandrel for rotation in the RCD housing, and a seal assembly is configured to provide a substantially fluid tight seal between the RCD housing and the mandrel and to isolate the bearing assembly from pressurized fluid in the RCD housing. The seal assembly includes a seal support housing with first and second seals which seal against an exterior surface of the mandrel, wherein the first and second seals are spaced from one another generally parallel to the axis of the mandrel so that there is a space around the mandrel between the first and second seals. The first seal has a first side which is exposed to fluid at a pressure greater than or equal to the pressure of fluid in the RCD housing and a second side which is exposed to fluid in the space between the seals. The second seal has a first side which is exposed to fluid pressure in the space between the seals and a second side which is exposed to fluid pressure at the exterior of the RCD housing. A pressure stepping mechanism pressurizes fluid to a pressure which is intermediate between the pressure at the first side of the first seal and the pressure at the second side of the second seal and supplies said fluid to the space between the two seals. The pressure stepping mechanism is integral with or secured to the seal support housing, wherein the seals, seal support housing, and pressure stepping mechanism are releasably attached to the RCD housing, and can be removed from the RCD together as a single unit, whilst leaving the mandrel and bearing assembly in place in the RCD housing.
The seals may seal against a seal sleeve which is mounted on the exterior of the mandrel and fixed for rotation with the mandrel, wherein the seal sleeve is detachable from the mandrel for removal from the RCD housing with the seals, seal support housing, and pressure stepping mechanism.
Each seal may be located in a separate seal carrier within the seal support housing, wherein each seal carrier is provided with a pressure isolating seal which provides a substantially fluid tight seal between the seal carrier and the seal support housing. The seal support housing, seal carriers, and pressure stepping mechanism are releasably attached to the RCD housing and can be removed from the RCD together as a single unit.
The RCD housing may comprise an upper housing and a lower housing, and the rotating control device may comprise a locking mechanism wherein the upper housing may be locked to the lower housing. The locking mechanism is operable to release the upper housing from the lower housing, wherein the seals, seal support housing, and pressure stepping mechanism are releasably attached to the upper housing. In this case, the bearing assembly may be located in the upper housing. Moreover, the lower housing may be provided with a mounting spool, which may comprise a flange, wherein the lower housing may be secured to another part of a drilling system such as a blowout preventer or riser.
The rotating control devices according to the disclosed embodiments may also have a combination of features from each of the disclosed embodiments of the rotating control device.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The problems being solved, and the solutions provided by the embodiments of the principles of the present disclosure are best understood by referring to
The multiple seal cartridge 70 is located inside the RCD housing and consists of the following primary components: the multiple seal assembly 71 which consists of six identical seals with spacers that seal against a seal sleeve 94, the seal sleeve 94 being part of the seal cartridge but, unlike the rest of the seal cartridge 70, is connected to the rotating control head mandrel 38 by a key 64 so that it rotates with the rotating control head mandrel 38. The key 64 merely prevents rotation of the seal sleeve 94 relative to the mandrel 38 and does not prevent the seal sleeve 94 from being removed from the mandrel 38 with the rest of the seal cartridge 70. The multiple seal assembly 71 is supported by a housing 74 that in turn is secured to the upper housing 12 of the rotating control head by a seal cartridge retainer 73. The seal cartridge 70 is prevented from rotating relative to the RCD housing by an anti-rotation pin 63. The compensator pistons 82 that stage the pressure between the seals are also housed in a piston housing 160 that is a part of the multiple seal cartridge 70. The seal cartridge will at least have three seals and may have more than six seals.
Advantageously the multiple seal cartridge is a single assembly that can be easily installed and removed from the RCD mandrel 38 as is illustrated in following figures.
Referring now to
The required PV (as discussed earlier) for this particular design is about 1,100,000which is well above the operating PV of a single lip seal of 250,000. So the idea, is to pressure stage the wellbore pressure across several seals. By way of example, this is achieved in
In this embodiment, the varying piston diameters are proportionally split so that if wellbore pressure is 100%, then the output from lines 90a to 90d are 80%, 60%, 40% and 20% respectively of the wellbore pressure. So assuming e.g. that the wellbore pressure is 1000 psi, then seal 85e will see 1000 psi on the wellbore side and 800 psi on the other side, seal 85d will have 800 psi on the high-pressure side and 600 psi on the other side and so on for the other seals. Each seal will only be exposed to a differential pressure of 200 psi. As this is a directly proportional system, the pressure staging ratio stays the same for differing pressures, so for 2000 psi, each seal will see a differential of 400 psi.
The problem with a parallel piston design occurs if there is a seal failure. Typically, this will be the first seal 85e as it is directly exposed to the drilling fluid. If this first seal fails, then assuming 1000 psi wellbore pressure, the full 1000 psi is transferred to the second seal 85d. However, the compensating pressure being supplied to behind seal 85d by line 90b is only 60% of 1000 psi which is 600 psi. So suddenly the intermediate seal 85d next to the first seal 85e is exposed to 400 psi differential, which will lead to rapid failure as it is outside of the operating envelope. Once it fails the situation is even worse for the next intermediate seal 85c leading to rapid failure. This cascade effect with ever increasing differential for the remaining seal directly exposed to wellbore pressure means that this is not a good solution. Moreover, the direct exposure of all of the compensating piston assemblies 82 to wellbore fluid from line 86 or direct exposure depending on the assembly detailed design also creates additional failure modes as the drilling fluid is contaminated with cuttings from the drilling operation.
Referring to
For the embodiment illustrated in
In
In
The gap at interface 91 is carefully controlled and optimized by the use of a bearing 100 between the seal sleeve 94 and the seal support housing 74. The seal support housing has anti-rotation pins 116 that are connected to the upper housing 12 (not shown in
For
For the seal stack, there are six identical seals 122a-f. The seal 122f has a first side exposed to fluid at the pressure of the fluid in the cavity 15 of the RCD housing 11 and a second side exposed to the fluid in the space between it and the adjacent seal 122e which is designated the first seal. The seal 122a has a first side which is exposed to fluid in the space between it and adjacent seal 122b and a second side which is exposed to atmospheric pressure is designated the second seal. The seals 122b, 122c, 122d and 122e which are arranged between the first seal 85e and the second seal 85a are intermediate seals. These may be lip seals, Kalsi seals or any other type of flexible seal able to handle a rotating interface 91. The seals are stacked and isolated from each other by seal retainers starting with 118 sitting above the second seal 122a and then 5 more identical seal retainers 124a to 124e. These may be of any material type. Each one of the retainers 124 have an inner seal groove 132 and an outer seal groove 126. Each of the retainers 124 has one set of O-rings 120, 128 and 130 which serve to give full pressure isolation for each main seal 122a to 122f. Whilst the first side of the first seal 122f could be in direct contact with fluid in the RCD housing 11 (i.e. drilling mud), in this case, there is a trash seal 156 which serves to isolate the main seals from direct contact with drilling mud. This is a non-pressure isolating seal meaning that it allows pressure communication in both directions. As such, the first side of the first seal 122f is exposed to fluid at the same pressure as the fluid in the RCD housing 11. At the bottom installed in the piston housing 160 we have a piston housing sleeve 162 with seals 168 and 170 containing a plurality of pistons 164a, 164b, 164c, 164d, 164e, of which one, piston 164a, is illustrated in
In
Another disclosed feature is the use of cartridge design for the pressure supporting cylinders. This is illustrated in
It is the intent of this disclosure to utilize a series pressure compensation system as illustrated in
In summary a pressure sealing system is described that utilizes two or more seals with stepped pressure support between the seals 122 preferentially in series configuration for the reasons described under
While the trash seal 156 described above is a non-pressure isolating seal, it should be appreciated that it could equally be a pressure-isolating seal. In this case, the pressure stepping mechanism may further includes means for supplying fluid to the space between the trash seal and the first seal at a pressure which is the same or greater than the fluid in the RCD housing. In this case, the pressure stepping mechanism could include a trash supply cylinder having a trash supply piston which divides the cylinder into an inlet volume and an outlet volume, the inlet volume being in communication with fluid in the RCD housing and the outlet volume being in fluid communication with the space between the trash seal and the first seal, the trash supply piston having an inlet face which is exposed to fluid pressure in the inlet volume and an outlet face which is exposed to fluid pressure in the outlet volume, the area of the inlet face being substantially the same as the area of the outlet face (in order to supply fluid at the same pressure as the fluid in the RCD housing), or greater than the area of the outlet face (in order to supply fluid at a pressure which is greater than the pressure of the fluid in the RCD housing). The inlet volume of the trash supply cylinder may be protected from direct contract with the fluid in the RCD housing by means of diaphragm, as discussed in relation to
In this case, the rotating control device may also be provided with an additional non-pressure isolating trash seal, the pressure isolating main trash seal 156 being located between the first seal 122f and the non-pressure isolating additional trash seal, the additional trash seal acting to protect the main trash seal 156 from direct contact with drilling mud. In the parallel arrangement described above in relation to
Although the disclosure has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the disclosure, will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed might be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
It is therefore contemplated that the claims will cover any such modifications or embodiments that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1902688.9 | Feb 2019 | GB | national |
The application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/793,457, filed on Jan. 17, 2019, and Great Britain Patent Application Serial. No. GB 1902688.9, filed on Feb. 28, 2019, both of which are incorporated in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
62793457 | Jan 2019 | US |