This disclosure relates to the field of rotating control devices used in wellbore drilling and intervention. More specifically, the disclosure relates to bearing and seal assemblies for rotating control devices.
Some drilling procedures include changing the fluid pressure exerted by the column of mud in the annulus. Such drilling procedures include “managed pressure drilling” (MPD) wherein a sealing element, called a rotating control device (“RCD”) is disposed at a selected longitudinal position in the annulus and a fluid outlet is provided below the RCD such that returning mud from the annulus may have its flow rate and/or pressure controlled, for example, using an adjustable orifice choke or other flow control device. MPD may enable using different density (“weight”) mud than would otherwise be required in order to provide sufficient hydrostatic pressure to keep fluid in exposed formations in the wellbore from entering the wellbore. An example method for MPD is described in U.S. Pat. No. 6,904,981 issued to van Riet, U.S. Pat. No. 7,185,719 issued to van Riet, and U.S. Pat. No. 7,350,597 issued to Reitsma.
Various designs exist to enable changing bearings and seals in a rotating control device while leaving a housing connected to a conduit such as a drilling riser.
An example embodiment of a rotating control device (“RCD”) is shown in
The RCD housing 50 may comprise one or more first locking elements 154 disposed at a selected longitudinal position along the RCD housing 50. In the present example embodiment, the one or more first locking elements 154 may comprise pistons. Pistons may be disposed in respective pockets 154B formed in or affixed to a side wall of the RCD housing 50. In some embodiments, each pocket 154B may be sealed on an outer end by a respective cover 154A. Fluid pressure, for example hydraulic fluid under pressure, may be selectively applied to one side of the one or more first locking elements 154 (e.g., pistons) to extend them radially inwardly into the through bore 150C. When the one or more first locking elements 154 (e.g., pistons) are extended inwardly, a landing surface 160A may be formed for a bearing adapter sleeve 160. Fluid pressure may be used to retract the one or more first locking elements 154 (e.g., pistons) when disassembly of the RCD 52 is desired. The bearing adapter sleeve 160 will be explained in more detail with reference to
It will be appreciated that using pistons for the one or more first locking elements 154 is only one example embodiment of the first locking elements 154. Other embodiments may comprise, for example and without limitation, motor rotated jack screws, electric solenoid operated plungers or any similar device which may be extended radially into the through bore 150C to form the landing surface 160A.
A bearing and seal assembly, to be explained in more detail with reference to
The bearing and seal assembly may be inserted into the RCD housing 50 and retrieved therefrom using a running tool assembly. An example embodiment of a running tool assembly may comprise a running tool mandrel 152 having couplings 152A, 152B at each longitudinal end, for example, threaded connections, for coupling the running tool mandrel 152 to part of a drill string (not shown) to insert the bearing and seal assembly into the RCD housing 50 or to retrieve the bearing and seal assembly therefrom. The running tool assembly may also comprise a landing sleeve 167 coupled to an exterior of the running tool mandrel 152, for example, by capscrews 168. The landing sleeve 167 may comprise a shoulder 167A that engages an upper surface of the rotatable member 162 when the running tool mandrel 152 is inserted into the bearing and seal assembly. A collet assembly 161 may be disposed in a corresponding feature in an exterior surface of the running tool mandrel 152. The collet assembly 161 may engage a mating feature 162A disposed on the interior surface of the rotatable member 162 so as to lock the running tool mandrel 152 to the rotatable member 162.
When the bearing and seal assembly are disposed in the RCD housing 50 so that the bearing adapter sleeve 160 is in contact with the landing surface formed 160A by the extended one or more first locking elements 154 (e.g., pistons), the bearing and seal assembly may be locked in place longitudinally within the RCD housing 50 by operating one or more second locking elements 156. The one or more second locking elements 156 in some embodiments may be pistons, for example, fluid pressure operated pistons each disposed in a respective cylinder 156B sealed on an exterior by a respective cover 156A. Fluid pressure, for example, hydraulic fluid under pressure may be used to extend the one or more second locking elements 156 (e.g., pistons) radially inwardly to retain the bearing adapter sleeve 160 longitudinally within the RCD housing 150 through bore 150C. The second locking elements 156 may be retracted when disassembly of the RCD 52 is desired. Pistons being used for the second locking elements 156 is only one example embodiment of the second locking elements 156. Other embodiments may use different structures for the second locking elements 156, for example and without limitation the structures described above with reference to the first locking elements 154 With the bearing and seal assembly thus retained in the RCD housing 150, the running tool assembly may be removed from the bearing and seal assembly by exerting upward (longitudinal) force on the running tool mandrel 152. Such upward force may cause shear screws 163 to break, thus enabling the running tool mandrel 152 to disengage from the rotatable member 162. The RCD 50 is then ready for use during, for example, drilling operations.
An example embodiment of the bearing and seal assembly is shown in more detail in
In the present example embodiment of the bearing and seal assembly 180, the non-rotating housing 153 may be disposed in the bearing adapter sleeve 160. The bearing adapter sleeve 160 may comprise an internal upset 160B which forms a landing surface for one longitudinal end of the non-rotating housing 153. In some embodiments, the internal upset 160B may be formed into the interior surface of the adapter sleeve 160 such as by machining. In some embodiments the internal upset 160B may be a ring affixed to the inner surface of the adapter sleeve 160.
A retainer such as a split retaining ring 174 may be coupled to one longitudinal end of the bearing adapter sleeve 160 using selected tensile and/or shear strength fasteners 172 such as capscrews. Other embodiments may use bolts, pins or other types of screws. The present embodiment of the selected tensile and/or shear strength fasteners 172 is not intended to limit the scope of the present disclosure. The selected tensile and/or shear strength fasteners 172 have a tensile and/or shear strength selected to enable removing the bearing and seal assembly 180 from the RCD housing (50 in
The tensile and/or shear strength of the selected tensile and/or shear strength fasteners 172 may be chosen so that they will break at a lower upward pulling force on the bearing and seal assembly 180 than that required to break the shear screws (163 in
Although only a few examples have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the examples. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
This application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 62/560,651, filed Sep. 19, 2017, which is expressly incorporated herein by this reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/051270 | 9/17/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/060233 | 3/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3297091 | Dale | Jan 1967 | A |
3934887 | Biffle | Jan 1976 | A |
4480703 | Garrett | Nov 1984 | A |
5848643 | Carbaugh | Dec 1998 | A |
6904981 | van Riet | Jun 2005 | B2 |
7185719 | van Riet | Mar 2007 | B2 |
7350597 | Reitsma et al. | Apr 2008 | B2 |
7699109 | May | Apr 2010 | B2 |
9856713 | Tarique | Jan 2018 | B2 |
20020070014 | Kinder | Jun 2002 | A1 |
20120318496 | Bailey | Dec 2012 | A1 |
20160290088 | DeWesee, Jr. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
9918323 | Apr 1999 | WO |
2016028340 | Feb 2016 | WO |
2017052190 | Mar 2017 | WO |
Entry |
---|
International Preliminary Report on Patentability for the International patent application PCT/US2018/051270 dated Apr. 2, 2020. |
International Search Report and Written Opinion for the International patent application PCT/US2018/051270 dated Jan. 28, 2019. |
Search and Examination Report R. 62 issued in European Patent Application 18859476, dated May 3, 2021, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210131205 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62560651 | Sep 2017 | US |