Various types and shapes of earth boring bits are used in various applications in the earth drilling industry. Earth boring bits have bit bodies which include various features such as a core, blades, and cutter pockets that extend into the bit body or roller cones mounted on a bit body, for example. Depending on the application/formation to be drilled, the appropriate type of drill bit may be selected based on the cutting action type for the bit and its appropriateness for use in the particular formation.
Drag bits, often referred to as “fixed cutter drill bits,” include bits that have cutting elements attached to the bit body, which may be a steel bit body or a matrix bit body formed from a matrix material such as tungsten carbide surrounded by a binder material. Drag bits may generally be defined as bits that have no moving parts. However, there are different types and methods of forming drag bits that are known in the art. For example, drag bits having abrasive material, such as diamond, impregnated into the surface of the material which forms the bit body are commonly referred to as “impreg” bits. Drag bits having cutting elements made of an ultra hard cutting surface layer or “table” (which may be made of polycrystalline diamond material or polycrystalline boron nitride material) deposited onto or otherwise bonded to a substrate are known in the art as polycrystalline diamond compact (“PDC”) bits.
PDC bits drill soft formations easily, but they are frequently used to drill moderately hard or abrasive formations. They cut rock formations with a shearing action using small cutters that do not penetrate deeply into the formation. Because the penetration depth is shallow, high rates of penetration are achieved through relatively high bit rotational velocities.
PDC cutters have been used in industrial applications including rock drilling and metal machining for many years. In PDC bits, PDC cutters are received within cutter pockets, which are formed within blades extending from a bit body, and are generally bonded to the blades by brazing to the inner surfaces of the cutter pockets. The PDC cutters are positioned along the leading edges of the bit body blades so that as the bit body is rotated, the PDC cutters engage and drill the earth formation. In use, high forces may be exerted on the PDC cutters, particularly in the forward-to-rear direction. Additionally, the bit and the PDC cutters may be subjected to substantial abrasive forces. In some instances, impact, vibration, and erosive forces have caused drill bit failure due to loss of one or more cutters, or due to breakage of the blades.
In some applications, a compact of polycrystalline diamond (PCD) (or other ultrahard material) is bonded to a substrate material, which may be a sintered metal-carbide to form a cutting structure. PCD includes a polycrystalline mass of diamonds (often synthetic) that are bonded together to form an integral, tough, high-strength mass or lattice. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired.
A PDC cutter may be formed by placing a sintered carbide substrate into the container of a press. A mixture of diamond grains or diamond grains and catalyst binder is placed atop the substrate and treated under high pressure, high temperature conditions. In doing so, metal binder (often cobalt) migrates from the substrate and passes through the diamond grains to promote intergrowth between the diamond grains. As a result, the diamond grains become bonded to each other to form the diamond layer, and the diamond layer is in turn integrally bonded to the substrate. The substrate may be made of a metal-carbide composite material, such as tungsten carbide-cobalt. The deposited diamond layer is often referred to as the “diamond table” or “abrasive layer.”
An example of PDC bit having a plurality of cutters with ultra hard working surfaces is shown in
A plurality of orifices 116 are positioned on the bit body 110 in the areas between the blades 120, which may be referred to as “gaps” or “fluid courses.” The orifices 116 are commonly adapted to accept nozzles. The orifices 116 allow drilling fluid to be discharged through the bit in selected directions and at selected rates of flow between the blades 120 for lubricating and cooling the drill bit 100, the blades 120 and the cutters 150. The drilling fluid also cleans and removes the cuttings as the drill bit 100 rotates and penetrates the geological formation. Without proper flow characteristics, insufficient cooling of the cutters 150 may result in cutter failure during drilling operations. The fluid courses are positioned to provide additional flow channels for drilling fluid and to provide a passage for formation cuttings to travel past the drill bit 100 toward the surface of a wellbore.
Referring to
Cutters may be attached to a drill bit or other downhole tool by a brazing process. In the brazing process, a braze material is positioned between the cutter and the cutter pocket. The material is melted and, upon subsequent solidification, bonds (attaches) the cutter in the cutter pocket. Selection of braze materials depends on their respective melting temperatures, to avoid excessive thermal exposure (and thermal damage) to the diamond layer prior to the bit (and cutter) even being used in a drilling operation. Specifically, alloys suitable for brazing cutting elements with diamond layers thereon have been limited to a couple of alloys which offer relatively low brazing temperatures to avoid or reduce damage to the diamond layer and high enough braze strength to retain cutting elements on drill bits.
A factor in determining the longevity of PDC cutters is the exposure of the cutter to heat. Polycrystalline diamond may be stable at temperatures of up to 700-750° C. in air, above which observed increases in temperature may result in damage to and structural failure of polycrystalline diamond. This deterioration in polycrystalline diamond may be due to the substantial difference in the coefficient of thermal expansion of the binder material, cobalt, as compared to diamond. Upon heating of polycrystalline diamond, the cobalt and the diamond lattice will expand at different rates, which may cause cracks to form in the diamond lattice structure and result in deterioration of the polycrystalline diamond. Damage may also be due to graphite formation at diamond-diamond necks leading to loss of microstructural integrity and strength loss, at extremely high temperatures.
Exposure to heat (through brazing or through frictional heat generated from the contact of the cutter with the formation) can cause thermal damage to the diamond table and eventually result in the formation of cracks (due to differences in thermal expansion coefficients) which can lead to spalling of the polycrystalline diamond layer, delamination between the polycrystalline diamond and substrate, and conversion of the diamond into graphite, causing rapid abrasive wear. As a cutting element contacts the formation, a wear flat develops and frictional heat is induced. As the cutting element continues to be used, the wear flat will increase in size and further induce frictional heat. The heat may build-up and cause failure of the cutting element due to thermal mis-match between diamond and catalyst discussed above. This is particularly true for cutters that are immovably attached to the drill bit, as conventional in the art.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments disclosed herein relate to a downhole cutting tool that includes a tool body defining a cutter pocket and at least one rolling cutter including an inner rotatable cutting element and a sleeve. Axial movement of the inner rotatable cutting element is limited by an external retention element disposed outside of the sleeve.
In another aspect, embodiments disclosed herein relate to a downhole cutting tool that includes a tool body having at least one cutting element support structure formed thereon, the at least one cutting element support structure including at least one cutter pocket formed therein. At least one rolling cutter is in the at least one cutter pocket and includes an inner rotatable cutting element partially disposed in a circumferential sleeve. The inner rotatable cutting element has a back retention portion that extends axially beyond the circumferential sleeve, and the back retention portion has a groove formed therein with a retention element in the groove.
In another aspect, embodiments disclosed herein relate to a downhole cutting tool that includes a tool body having at least one cutting element support structure. The at least one cutting element support structure includes at least one cutter pocket in the at least one cutting element support and extending from an opening in a leading face and formation facing surface of the cutting element support to a back face. The at least one cutting element support structure also includes at least one retention opening in the formation facing surface spaced rearward from the opening of the at least one cutter pocket. The at least one retention opening extends into the cutting element support surface to interface the back of the cutter pocket. The tool further includes at least one rolling cutter in the at least one cutter pocket. The rolling cutter is at least partially retained by a retention element in the at least one retention opening.
In yet another aspect, embodiments disclosed herein relate to a downhole cutting tool that includes a tool body having at least one cutting element support structure. The at least one cutting element support structure includes at least one cutter pocket. At least one rolling cutter is in the at least one cutter pocket and includes an inner rotatable cutting element. The inner rotatable cutting element has an outermost diameter that extends at least 40% of an axial length of the rotatable cutting element. The rotatable cutting further includes a groove; and a retention element is in the groove, thereby retaining the rotatable cutting element in the cutter pocket.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
In some aspects, embodiments disclosed herein relate to drill bits and other downhole cutting tools using rotatable cutting structures (rolling cutters) and the retention of such rolling cutters.
Generally, rotatable cutting elements (also referred to as rolling cutters) described herein allow at least one surface or portion of the cutting element to rotate as the cutting element contacts a formation. As the cutting element contacts the formation, the cutting action may allow portion of the cutting element to rotate around a cutting element axis extending through the cutting element. Rotation of a portion of the cutting structure may allow for a cutting surface to cut the formation using the entire outer edge of the cutting surface, rather than the same section of the outer edge, as observed in a conventional cutting element.
Numerous variations on the cutting element capable of rotating may be used without departing from the scope of the present disclosure. For example, the rotation of the rolling cutter may be controlled by the side cutting force and the frictional force between the bearing surfaces.
If the side cutting force generates a torque which can overcome the torque from the frictional force, the rotatable portion will have rotating motion. The side cutting force may be affected by cutter side rake, back rake, and geometry, including the working surface patterns disclosed herein. Additionally, the side cutting force may be affected by the surface finishing of the surfaces of the cutting element components, the frictional properties of the formation, as well as drilling parameters, such as depth of cut. The frictional force at the bearing surfaces may affected, for example, by surface finishing, mud intrusion, etc. The design of the rotatable cutters and the location and orientation of rotatable cutters on the bit disclosed herein may be selected to ensure that the side cutting force overcomes the frictional force to allow for rotation of the rotatable portion.
Referring now to
Inner rotatable cutting element is retained within sleeve (with limitation on the axial movement thereof) by external retention element 330. External retention element 330 is disposed at an axially lower position (opposite cutting extension portion 314) of sleeve 320-1. Thus, a back retention portion 316 of inner rotatable cutting element 310-1 extends axially lower than sleeve 320 to limit the axial movement of inner rotatable cutting element 310-1 relative to sleeve 320-1. In limiting the axial movement, inner rotatable cutting elements 310-1 may be allowed to move axially back into the sleeve 320-1 based on general forces experienced during drilling when weight on bit is applied, but external retention element 330 may keep the inner rotatable cutting element 310-1 from falling out of the sleeve 320-1.
Referring now to
Inner rotatable cutting element 310-1, once inserted into a sleeve 320-1, together referred to as a rolling cutter 300, may be disposed on a cutting element support structure 400, as illustrated in
Referring now to
As shown in the cross sectional view of a rolling cutter installed on a cutting element support structure of
Referring now to
For example, referring now to
Referring now to
Various embodiments described above (in
According to some embodiments, D1 extends along at least 40% (or at least 50, or 60%, etc.) of the axial length of rotatable cutting element 910-1, which allows for the longer cutting end 912 having the full D1 be the load bearing surface during rotation, as compared to a reduced diameter spindle portion 916-1. As mentioned, the spindle 916-1 may be formed of a different material, such as a grade of tungsten carbide or a steel that are tougher as compared to the cutting end of rotatable cutting element 910-1. The spindle 916-1 may have a reduced diameter D2 that ranges from 25 to 75% of the full diameter D1 (with embodiments having a lower limit of any of 25, 40, 50% and an upper limit of any of 40, 50, 60, 75%). Depending on the size of the spindle 916-1, the sleeve 920-1 can have the same diameter as D1 or can have a smaller diameter than D1. For example, in
Further, while
One or more embodiments described herein may have an ultrahard material disposed on a substrate. Such ultrahard materials may include a conventional polycrystalline diamond table (a table of interconnected diamond particles having interstitial spaces therebetween in which a metal component (such as a metal catalyst) may reside, a thermally stable diamond layer (i.e., having a thermal stability greater than that of conventional polycrystalline diamond, 750° C.) formed, for example, by substantially removing metal from the interstitial spaces between interconnected diamond particles or from a diamond/silicon carbide composite, or other ultrahard material such as a cubic boron nitride. Further, in particular embodiments, the rolling cutter may be formed entirely of ultrahard material(s), but the element may include a plurality of diamond grades used, for example, to form a gradient structure (with a smooth or non-smooth transition between the grades). In a particular embodiment, a first diamond grade having smaller particle sizes and/or a higher diamond density may be used to form the upper portion of the inner rotatable cutting element (that forms the cutting edge when installed on a bit or other tool), while a second diamond grade having larger particle sizes and/or a higher metal content may be used to form the lower, non-cutting portion of the cutting element. Further, it is also within the scope of the present disclosure that more than two diamond grades may be used.
Thermally stable diamond may be formed in various manners. A typical polycrystalline diamond layer includes individual diamond “crystals” that are interconnected. The individual diamond crystals thus form a lattice structure. A metal catalyst, such as cobalt, may be used to promote recrystallization of the diamond particles and formation of the lattice structure. Thus, cobalt particles are generally found within the interstitial spaces in the diamond lattice structure. Cobalt has a significantly different coefficient of thermal expansion as compared to diamond. Therefore, upon heating of a diamond table, the cobalt and the diamond lattice will expand at different rates, causing cracks to form in the lattice structure and resulting in deterioration of the diamond table.
To obviate this problem, strong acids may be used to “leach” the cobalt from a polycrystalline diamond lattice structure (either a thin volume or entire tablet) to at least reduce the damage experienced from heating diamond-cobalt composite at different rates upon heating. Examples of “leaching” processes can be found, for example, in U.S. Pat. Nos. 4,288,248 and 4,104,344. Briefly, a strong acid, such as hydrofluoric acid or combinations of several strong acids may be used to treat the diamond table, removing at least a portion of the co-catalyst from the PDC composite. Suitable acids include nitric acid, hydrofluoric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or perchloric acid, or combinations of these acids. In addition, caustics, such as sodium hydroxide and potassium hydroxide, have been used to the carbide industry to digest metallic elements from carbide composites. In addition, other acidic and basic leaching agents may be used as desired. Those having ordinary skill in the art will appreciate that the molarity of the leaching agent may be adjusted depending on the time desired to leach, concerns about hazards, etc.
By leaching out the cobalt, thermally stable polycrystalline (TSP) diamond may be formed.
In certain embodiments, only a select portion of a diamond composite is leached, in order to gain thermal stability without losing impact resistance. As used herein, the term TSP includes both of the above (i.e., partially and completely leached) compounds. Interstitial volumes remaining after leaching may be reduced by either furthering consolidation or by filling the volume with a secondary material, such as described in U.S. Pat. No. 5,127,923, which is herein incorporated by reference in its entirety.
In one or more other embodiments, TSP may be formed by forming the diamond layer in a press using a binder other than cobalt, one such as silicon, which has a coefficient of thermal expansion more similar to that of diamond than cobalt has. During the manufacturing process, a large portion, 80 to 100 volume percent, of the silicon reacts with the diamond lattice to form silicon carbide which also has a thermal expansion similar to diamond. Upon heating, any remaining silicon, silicon carbide, and the diamond lattice will expand at more similar rates as compared to rates of expansion for cobalt and diamond, resulting in a more thermally stable layer. PDC cutters having a TSP cutting layer have relatively low wear rates, even as cutter temperatures reach 1200° C. However, thermally stable diamond layer may be formed by other methods, including, for example, by altering processing conditions in the formation of the diamond layer.
The substrate on which the cutting face is optionally disposed may be formed of a variety of hard or ultrahard particles. In one embodiment, the substrate may be formed from a suitable material such as tungsten carbide, tantalum carbide, or titanium carbide. Additionally, various binding metals may be included in the substrate, such as cobalt, nickel, iron, metal alloys, or mixtures thereof. In the substrate, the metal carbide grains are supported within the metallic binder, such as cobalt. Additionally, the substrate may be formed of a sintered tungsten carbide composite structure. Various metal carbide compositions and binders may be used, in addition to tungsten carbide and cobalt. Thus, references to the use of tungsten carbide and cobalt are for illustrative purposes, and no limitation on the type of substrate or binder used is intended. In another embodiment, the substrate may also be formed from a diamond ultrahard material such as polycrystalline diamond or thermally stable diamond. While the illustrated embodiments show the cutting face and substrate as two distinct pieces, one of skill in the art should appreciate that it is within the scope of the present disclosure the cutting face and substrate are integral, identical compositions. In such an embodiment, it may be desirable to have a single diamond composite forming the cutting face and substrate or distinct layers. Specifically, in embodiments where the cutting element is a rotatable cutting element, the entire cutting element may be formed from an ultrahard material, including thermally stable diamond (formed, for example, by removing metal from the interstitial regions or by forming a diamond/silicon carbide composite).
The retention element may be formed from a variety of materials. In one embodiment, the retention element may be formed of a suitable material such as tungsten carbide, tantalum carbide, or titanium carbide. Additionally, various binding metals may be included in the outer support element, such as cobalt, nickel, iron, metal alloys, or mixtures thereof, such that the metal carbide grains are supported within the metallic binder. It is also within the scope of the present disclosure that the retention element and/or substrate may also include one or more lubricious materials, such as diamond to reduce the coefficient of friction therebetween. The components may be formed of such materials in their entirely or portions of the components may include such lubricious materials deposited on the component, such as by chemical plating, chemical vapor deposition (CVD) including hollow cathode plasma enhanced CVD, physical vapor deposition, vacuum deposition, arc processes, or high velocity sprays. In a particular embodiment, a diamond-like coating may be deposited through CVD or hallow cathode plasma enhanced CVD, such as the type of coatings disclosed in US 2010/0108403, which is assigned to the present assignee and herein incorporated by reference in its entirety.
In other embodiments, the retention elements may be formed of tool steel or other alloy steels, nickel-based alloys, or cobalt-based alloys. One or more components may be coated with a hardfacing material for increased erosion protection. Such coatings may be applied by various techniques known in the art such as, for example, detonation gun (d-gun) or spray-and-fuse techniques.
The cutting elements of the present disclosure may be incorporated in various types of cutting tools, including for example, fixed cutter bits or hole enlargement tools such as reamers. Bits having the cutting elements of the present disclosure may include a single rolling cutter with the remaining cutting elements being conventional fixed cutting elements, all cutting elements being rotatable, or any combination therebetween of rolling cutters and conventional, fixed cutters. Further, cutting elements of the present disclosure may be disposed on cutting tool blades (such as drag bit blades or reamer blades) having other wear elements incorporated therein. For example, cutting elements of the present disclosure may be disposed on diamond impregnated blades. Additionally, any size cutting elements may be used. For example, in various embodiments, the cutting elements may be formed in sizes including, but not limited to, 9 mm, 11 mm, 13 mm, 16 mm, and 19 mm.
Further, any of the design modifications as described above, including, for example, side rake, back rake, variations in geometry, surface alteration/etching, seals, bearings, material compositions, diamond or similar low-friction bearing surfaces, etc., may be included in various combinations not limited to those described above in the cutting elements of the present disclosure. In one embodiment, a cutter may have a side rake ranging from 0 to ±45 degrees. In another embodiment, a cutter may have a back rake ranging from about 5 to 35 degrees.
In one or more embodiments, rolling cutters may be disposed in locations of the bit or other tool experiencing the greatest wear, such as the nose or shoulder of the bit. Referring now to
Composite blade profile 39 (most clearly shown in the right half of bit 10 in
The axially lowermost point of convex shoulder region 25 and composite blade profile 39 defines a blade profile nose 27. At blade profile nose 27, the slope of a tangent line 27a to convex shoulder region 25 and composite blade profile 39 is zero. Thus, as used herein, the term “blade profile nose” refers to the point along a convex region of a composite blade profile of a bit in rotated profile view at which the slope of a tangent to the composite blade profile is zero. For most conventional fixed cutter bits (e.g., bit 10), the composite blade profile includes only one convex shoulder region (e.g., convex shoulder region 25), and only one blade profile nose (e.g., nose 27). In one or more embodiments, rolling cutters of the present disclosure may be located in the nose and/or shoulder region of the cutting profile, and fixed cutters may be located in the cone and/or gage of the cutting profile. In other embodiments, the rolling cutters may also be disposed in the cone and/or gage of the cutting profile. For example, in one or more embodiments, rolling cutters 300 are located in at least some of the nose and shoulder regions of the blades, while fixed cutters 150 are located in the cone and gage regions of the blade. It is also within the scope of the present disclosure that the nose and shoulder may also include fixed cutters as either primary or back-up cutting elements.
As described throughout the present disclosure, the cutting elements may be used on any downhole cutting tool, including, for example, a fixed cutter drill bit or hole opener.
Although just a few embodiments have been described in detail above, those skilled in the art will appreciate that many modifications are possible in the example embodiments without materially departing from the apparatus, systems, and methods disclosed herein. Accordingly, such modifications are intended to be included within the scope of this disclosure. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. For example, any element described in relation to an embodiment herein may be combinable with any element of any other embodiment described herein.
In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not just structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke means-plus-function for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function. Each addition, deletion, and modification to the embodiments that fall within the meaning and scope of the claims is to be embraced by the claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/234,560 filed on Sep. 29, 2015, the disclosure of which is incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/049170 | 8/29/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62234560 | Sep 2015 | US |