The present disclosure relates to a rotating device and a vacuum pump and particularly to a rotating device and a vacuum pump used as a gas exhausting means or the like of a process chamber and other sealed chambers in a semiconductor manufacturing device, a flat-panel display manufacturing device, and a solar panel manufacturing device.
In general, a built-in type rotating device incorporating a motor as power in a housing becomes a high temperature due to heat generation of the motor itself, which causes a concern that an output of the motor is lowered. In order to improve it, such a structure has been conventionally proposed that a hollow part is formed in a spindle with a rotor constituting the motor together with a stator provided, and a refrigerant (a cooling gas or a liquid) is supplied into the hollow part so as to cool the spindle and to cool the entire motor through the spindle (see Japanese Patent No. 3197195, for example).
In the structure described in Japanese Patent No. 3197195, the hollow part which is open on a base end side and is closed on a distal end side is provided on the spindle along an axis thereof, and a cooling-liquid guide is inserted/provided in the hollow part from an open part. And a cooling liquid is injected into the hollow part from a distal end of the cooling-liquid guide so as to cool the spindle so that the entire motor is cooled through the spindle.
However, the structure described in Japanese Patent No. 3197195 is constituted such that the cooling liquid (refrigerant) is injected into the hollow part from the distal end of the cooling-liquid guide and thus, there is a concern that the injected refrigerant leaks out of the hollow part into an airgap. This problem also occurs similarly when the refrigerant is a gas.
If the refrigerant leaks out into the airgap, a failure of the rotating device could occur, which is caused by erosion, insulation breakdown or the like of a material by the leaking-out refrigerant. Moreover, in the vacuum pump, if the refrigerant leaks out into the airgap, a degree of vacuum deteriorates. However, if the refrigerant with a small flowrate/pressure to such a degree that would not leak out to the airgap side is injected into the hollow part, a cooling effect is weak, and sufficient cooling cannot be obtained.
In order to prevent the refrigerant from leaking out into the airgap, a seal structure needs to be applied to an outer side of the spindle. However, if a sufficient seal structure is applied, a cost is increased. Moreover, in the rotating device such as a vacuum pump or the like in which the spindle is magnetically floated, there has been a problem that the seal structure is particularly difficult.
Thus, there is a technical problem which should be solved in order to provide a rotating device and a vacuum pump which can obtain high reliability by sufficiently cooling the rotating body with a structure in which the refrigerant does not leak out into the inside and can lower the cost, and the present disclosure has an object to solve this problem.
The present disclosure was proposed in order to achieve the aforementioned object, and a disclosure described in claim 1 provides a rotating device including a casing and a rotating body having a rotating shaft disposed rotatably relative to the casing and constituted integrally with the rotating shaft, the rotating device including:
a hollow part formed along a center of the rotating shaft inside the rotating body, and
a cooling rod which is fixed to the casing, is provided in the hollow part in a state of non-contact with the rotating body without having a mechanism for injecting a refrigerant into the hollow part, absorbs a radiation heat of the rotating body, and cools the rotating body.
According to this constitution, by means of the cooling rod provided in the hollow part formed inside the rotating body in the state of non-contact with the rotating body without having the mechanism for injecting the refrigerant into the hollow part, cooling can be performed so that the temperature of the rotating body does not become higher than necessary by absorbing the radiation heat from the rotating body.
Moreover, since the structure is not to inject the refrigerant into the hollow part, there is no need to apply a seal structure which prevents leakage of the refrigerant between a stator body and a rotating body or between the cooling rod and the rotating body, which enables size reduction and cost down.
Furthermore, since the structure is not to inject the refrigerant into the hollow part, there is no refrigerant which intrudes into the airgap, and a failure of the rotating device caused by erosion, insulation breakdown or the like of the material by the refrigerant can be prevented. Particularly, in the vacuum pump, the rotating body can be cooled without lowering the degree of vacuum, and the vacuum pump can be driven with high accuracy. Note that the spindle described in the aforementioned Japanese Patent No. 3197195 corresponds to the rotating shaft in the present disclosure.
The disclosure as described in claim 2 provides, in the constitution described in claim 1, a rotating device integrally connected to the casing through a first insulating material which shuts off the heat from the casing.
According to this constitution, since the cooling rod is integrally connected to the casing, the connection between the cooling rod and the casing is made tight, whereby high airtightness can be realized by eliminating a gap. Moreover, since the cooling rod and the casing are connected through the insulating material, the cooling rod is hardly heated by the casing, and an effect of cooling the rotating body can be improved.
The disclosure as described in claim 3 provides, in the constitution described in claim 1 or 2, a rotating device in which the cooling rod has a heat radiation mechanism which radiates a heat of the cooling rod mounted on one end side withdrawn from the hollow part.
According to this constitution, the heat of the cooling rod warmed by absorbing the radiation heat from the rotating body is emitted to the outside and escapes through the heat radiation mechanism mounted on the one end side of the cooling rod withdrawn from the hollow part, and the cooling rod can be kept in a low-temperature state efficiently.
The disclosure as described in claim 4 provides, in the constitution described in claim 3, a rotating device in which the heat radiation mechanism has a heat radiation plate.
According to this constitution, the heat of the cooling rod warmed by absorbing the radiation heat from the rotating body is emitted to the outside and escapes through the heat radiation plate provided in the heat radiation mechanism mounted on the one end side of the cooling rod withdrawn from the hollow part, and the cooling rod can be kept in the low-temperature state efficiently.
The disclosure as described in claim 5 provides, in the constitution described in claim 3 or 4, a rotating device in which the heat radiation mechanism incorporates piping through which cooling water is caused to flow.
According to this constitution, the heat radiation mechanism is cooled by the piping incorporated in the heat radiation mechanism itself and the cooling water flowing through the piping, and the heat of the cooling rod warmed by absorbing the radiation heat is absorbed by the piping and the cooling water and is caused to escape to the outside, whereby the cooling rod can be kept in the low-temperature state more efficiently. As a result, the heat radiation plate or the like provided in the heat radiation mechanism can be omitted.
The disclosure as described in claim 6 provides, in the constitution described in any one of claims 2 to 4, a rotating device in which the heat radiation mechanism has a Peltier-type unit in which a Peltier element is provided.
According to this constitution, the heat radiation mechanism is cooled by the Peltier-type unit constituted by the heat radiation mechanism itself, and the heat of the cooling rod warmed by absorbing the radiation heat from the rotating body is absorbed by the Peltier-type unit and is caused to escape to the outside, whereby the cooling rod can be kept in the low-temperature state more efficiently. The Peltier-type unit, here, is a Peltier unit known as a cooling unit using the Peltier element, for example.
The disclosure as described in claim 7 provides, in the constitution described in any one of claims 1 to 6, a rotating device in which the cooling rod has a heat radiation portion disposed outside the hollow part and has a heat pipe disposed along the rotating shaft center in the hollow part.
According to this constitution, the heat of the cooling rod warmed by the radiation heat is transmitted to the outside through the heat pipe disposed inside the cooling rod and is emitted. As a result, the cooling rod can be kept in the low-temperature state efficiently.
The disclosure as described in claim 8 provides, in the constitution described in claim 7, a rotating device in which the heat pipes are provided in plural, and a high-temperature portion of at least one of the heat pipes is disposed by being shifted in a rotating-shaft direction.
According to this constitution, by providing the high-temperature portion of at least one of the plurality of heat pipes by being shifted in the rotating-shaft direction so that the heat pipe corresponds to a part where the radiation heat is to be absorbed more, respectively, the radiation heat can be absorbed efficiently, and the rotating body can be cooled. Note that, in the rotating-shaft direction, a plurality of heat pipes with different lengths may be prepared.
The disclosure as described in claim 9 provides, in the constitution described in claim 7 or 8, a rotating device in which substantially entirety of the cooling rod is constituted by the heat pipe.
According to this constitution, by replacing the cooling rod itself with the heat pipe, the structure is simplified. And the radiation heat is directly absorbed by the heat pipe, is transmitted to the outside, and is emitted. As a result, the rotating body can be kept in the low-temperature state at all time.
The disclosure as described in claim 10 provides, in the constitution described in any one of claims 1 to 8, a rotating device in which the cooling rod is disposed along the rotating shaft center and has a refrigerant pipe through which a refrigerant is caused to flow.
According to this constitution, the heat of the cooling rod warmed by the radiation heat is emitted to the outside through the refrigerant flowing inside the cooling pipe disposed inside the cooling rod. As a result, the cooling rod can be kept in the low-temperature state at all time without allowing the refrigerant to intrude into the airgap.
The disclosure as described in claim 11 provides, in the constitution described in any one of claims 1 to 10, a rotating device in which a purge gas is caused to flow through a gap between the cooling rod and the hollow part.
According to this constitution, the cooling rod cools the rotating body by absorbing a heat transmitted by the purge gas in addition to the radiation heat directly received from the rotating body. That is, the cooling of the rotating body can be performed effectively by heat absorption of both the heat absorption by the cooling rod and the heat absorption by the purge gas.
The disclosure as described in claim 12 provides, in the constitution described in claim 11, a rotating device in which the cooling rod includes a fin in contact with the purge gas on an outer peripheral surface.
According to this constitution, the cooling effect on the rotating body can be improved by agitating the purge gas passing through the gap between the cooling rod and the hollow part by the fin provided on the outer peripheral surface of the cooling rod so as to promote heat transmission by the purge gas.
The disclosure as described in claim 13 provides, in the constitution described in claim 11 or 12, a rotating device in which a groove through which the purge gas is passed is provided in an inner peripheral surface of the hollow part.
According to this constitution, the purge gas passing through the gap between the cooling rod and the hollow part is agitated in the groove provided in the inner peripheral surface of the hollow part so as to promote the heat transmission, whereby the cooling effect on the rotating body can be improved.
The disclosure as described in claim 14 provides, in the constitution described in any one of claims 1 to 13, a rotating device in which the cooling rod is formed with a locally increased thickness so that a surface area of a spot to be an outer peripheral surface or an inner peripheral surface of the cooling rod corresponding to a spot requiring cooling of the rotating body becomes larger than the surface area of a spot to be the outer peripheral surface or the inner peripheral surface of the cooling rod corresponding to a spot not requiring the cooling.
According to this constitution, by enlarging the surface area by increasing the thickness of the spot to be the outer peripheral surface or the inner peripheral surface of the cooling rod corresponding to the spot requiring the cooling of the rotating body, a heat transmission amount of the spot requiring the cooling is increased, and the rotating body can be cooled efficiently.
The disclosure as described in claim 15 provides, in the constitution described in any one of claims 1 to 14, a rotating device in which a spot between the cooling rod and the hollow part corresponding to the spot not requiring the cooling of the rotating body is covered by a second insulating material.
According to this constitution, heating of the cooling rod by receiving the heat from the spot not requiring the cooling is prevented by the second insulating material provided between the cooling rod and the hollow part, whereby the cooling effect on the rotating body can be improved.
The disclosure as described in claim 16 provides a vacuum pump including:
a casing in which an inlet port and an outlet port are formed,
a rotating shaft disposed rotatably relative to the casing, and
a rotating body constituted integrally with the rotating shaft,
the vacuum pump further including
inside the rotating body, a hollow part formed along the rotating shaft center, and
a cooling rod which is fixed to the casing and provided in the hollow part in a state of non-contact with the rotating body without having a mechanism for injecting a refrigerant into the hollow part, and which absorbs a radiation heat of the rotating body so as to cool the rotating body.
According to the vacuum pump according to this constitution, by means of the cooling rod provided in the state of non-contact with the rotating body in the hollow part formed inside the rotating body without having the mechanism for injecting the refrigerant into the hollow part, the radiation heat from the rotating body can be absorbed and cooled so that the temperature of the rotating body does not rise higher than necessary.
Moreover, since it is not such a structure that injects the refrigerant into the hollow part, there is no need to apply the seal structure which prevents leakage of the refrigerant between the cooling rod and the rotating body, which enables size reduction and cost down.
Furthermore, since it is not such a structure that injects the refrigerant into the hollow part, there is no refrigerant which directly intrudes to the airgap side of the motor portion or the like and the side of the rotor blade or the like. Thus, the rotating body can be cooled without lowering the degree of vacuum, and the vacuum pump can be driven with high accuracy. Moreover, since there is no refrigerant in direct contact with the rotating body or the stator body, erosion of the rotating body or the stator body can be prevented.
According to the disclosure, by means of the cooling rod provided in the state of non-contact with the rotating body in the hollow part formed inside the rotating body, the cooling can be performed so that the rotating body temperature does not become higher than necessary by absorbing the radiation heat from the rotating body. Moreover, since the refrigerant is not injected into the hollow part, there is no need to apply the seal structure which prevents leakage of the refrigerant between the cooling rod and the rotating body, which enables size reduction and cost down.
Moreover, since it is not such a structure that injects the refrigerant into the hollow part, there is no refrigerant which intrudes into the airgap, and a failure of the rotating device caused by erosion, insulation breakdown or the like of the material by the refrigerant can be prevented. When it is applied to the vacuum pump, since there is no refrigerant directly intruding to the airgap side of the motor portion or the like and the rotator blade side of the rotating body or the like, the rotating body can be cooled without lowering the degree of vacuum, and the vacuum pump can be driven with high accuracy. Furthermore, since there is no refrigerant in direct contact with the rotating body or the stator body, erosion of the rotating body or the stator body can be prevented, whereby durability can be improved.
The present disclosure describes a rotating device in order to achieve an object to provide a rotating device and the like which can obtain high reliability by sufficiently cooling a rotating body with a structure in which a refrigerant or the like does not leak out into an inside and can lower a cost, including a casing and a rotating body having a rotating shaft disposed rotatably relative to the casing and constituted integrally with the rotating shaft, and it was realized by a constitution including a hollow part formed along a center of the rotating shaft inside the rotating body and a cooling rod fixed to the casing and provided in a state of non-contact with the rotating body in the hollow part without having a mechanism for injecting a refrigerant into the hollow part and cooling the rotating body by absorbing a radiation heat of the rotating body.
Hereinafter, some examples of the present disclosure will be described in detail on the basis of the attached drawings. Note that, in the following examples, when numbers, numeral values, amounts, ranges and the like of constituent elements are referred to, except a case explicitly indicated in particular and a case in principle and apparently limited to a specific number, they are not limited to the specific numbers but may be larger or smaller than the specific numbers.
Moreover, when shapes and positional relationships of the constituent elements and the like are referred to, except a case explicitly indicated in particular and a case in principle and apparently considered not to be so and the like, they include those substantially approximating or similar to the shapes and the like.
Moreover, the drawings are exaggerated by enlarging a featured part or the like in order to facilitate understanding of the featured part in some cases, and dimension ratios and the like of the constituent elements are not necessarily identical to the actual. Furthermore, in sectional views, hatching of some of the constituent elements is omitted in order to facilitate understanding of a sectional structure of the constituent element in some cases.
Moreover, in the following explanation, expressions indicating directions such as up-down, left-right and the like are not absolute, and though they are appropriate when each part of the rotating device in the present disclosure is depicted but should be interpreted with changes in accordance with changes in an attitude when the attitude was changed. Furthermore, the same reference signs are given to the same elements throughout the explanation of the examples.
The vacuum pump 10 shown in
The vacuum pump 10 includes a casing 11. The casing 11 is formed having a substantially cylindrical shape with a bottom by disposing a cylindrically-shaped pump case 11A, a pump base 11B, and a base end lid 11C in a cylinder axis direction thereof, by connecting the pump case 11A and the pump base 11B by a fastening member 12, and by connecting the pump base 11B and the base end lid 11C by a mounting bolt 41.
An upper end portion side of the pump case 11A (upward on the paper surface in
Inside the casing 11, a structure which exerts an exhaustion function is accommodated, and it sucks a gas (gas) in the sealed chamber through the inlet port 13 and exhausts it through the outlet port 14. As a result, a reaction gas and other gases for manufacturing semiconductors can be exhausted from the sealed chamber, for example. Note that, the example shown in
In more detail, the structure which exerts the exhaustion function is roughly constituted by a stator body 17 fixed in the casing 11 and a rotating body 18 disposed rotatably relative to the stator body 17 and the like.
The rotating body 18 is constituted by a rotor blade 19, a rotating shaft 20 and the like.
The rotor blade 19 has a cylinder member 21 formed by a first cylinder portion 21a disposed on the inlet port 13 side (molecular-pump mechanism portion 10A) and a second cylinder portion 21b disposed on the outlet port 14 side (thread-groove type pump mechanism portion 10B) integrally.
The first cylinder portion 21a is a member having a substantially cylindrical shape and constitutes a rotor blade portion of the molecular-pump mechanism portion 10A. On an outer peripheral surface of the first cylinder portion 21a, a plurality of blades 22 extending outward radially from a surface parallel to a rotor blade 19 and a shaft center of the rotating shaft 20 are provided at substantially equal intervals in a rotating direction. Moreover, each of the blades 22 is inclined in the same direction only by a predetermined angle with respect to a horizontal direction. And in the first cylinder portion 21a, the plurality of blades 22 extending radially are formed in plural stages at predetermined intervals in an axis direction.
Moreover, approximately in the middle in the axis direction of the first cylinder portion 21a, a partition 23 to be joined to the rotating shaft 20 is formed. In the partition 23, a shaft hole 23a into which the upper end side of the rotating shaft 20 is inserted/mounted and a bolt hole, not shown, to which a mounting bolt 24 which fixes the rotating shaft 20 and the rotor blade 19 is mounted are formed.
The second cylinder portion 21b is a member with a cylindrically-shaped outer peripheral surface and constitutes a rotor blade portion of the thread-groove type pump mechanism portion 10B.
The rotating shaft 20 is a columnar member constituting a shaft of the rotating body 18, and a flange portion 20a which is screwed/fixed to the partition 23 of the first cylinder portion 21a through the mounting bolt 24 is integrally formed on an upper end portion. Moreover, in the rotating shaft 20, a hollow part 20b having a circular cross-sectional surface and formed along the rotating shaft center from a lower end surface toward an upper end side is formed. And the rotating shaft 20 is fixed to and integrated with the cylinder member 21 by screwing the mounting bolt 24 to a mounting hole of the flange portion 20a through the bolt hole, not shown, from the upper surface side of the partition 23 after the upper end portion is inserted into the shaft hole 23a from an inner side (lower side) of the first cylinder portion 21a until the flange portion 20a is brought into contact with a lower surface of the partition 23.
Moreover, substantially in the middle in the axis direction of the rotating shaft 20, a permanent magnet is fixed to the outer peripheral surface and constitutes a part of a rotor side of the motor portion 25. Magnetic poles formed by this permanent magnet on the outer periphery of the rotating shaft 20 are such that a half circumference of the outer peripheral surface is an N pole, and the remaining half circumference is an S pole.
Furthermore, a part on the rotating body 18 side in the radial magnetic-bearing portion 26 for supporting the rotating shaft 20 in the radial direction with respect to the motor portion 25 is formed on the upper end side (inlet port 13 side) of the rotating shaft 20, and a part on the rotating body 18 side in the radial magnetic-bearing portion 27 for similarly supporting the rotating shaft 20 in the radial direction with respect to the motor portion 25 is formed on the lower end side (outlet port 14 side). Moreover, on a lower end of the rotating shaft 20, a part on the rotating body 18 side of an axial magnetic-bearing portion 28 for supporting the rotating shaft 20 in the axis direction (thrust direction) is formed.
Moreover, in the vicinity of radial magnetic-bearing portions 26, 27, parts on the rotor sides of radial displacement sensors 29, 30 are formed, respectively, so that displacement of the rotating shaft 20 in the radial direction can be detected.
These parts on the rotor sides of the radial magnetic-bearing portions 26, 27 and the radial displacement sensors 29, 30 are constituted by a laminated steel plate in which steel plates are laminated in a shaft direction of the rotating body 18. This is to prevent generation of an eddy current in the rotating shaft 20 by magnetic fields generated by coils constituting the parts on the rotor sides of the radial magnetic-bearing portions 26, 27 and the radial displacement sensors 29, 30.
The rotor blade 19 is constituted by using metal such as stainless, an aluminum alloy and the like.
On an inner peripheral side of the casing 11, the stator body 17 is formed. The stator body 17 is constituted by a stator blade 31 provided on the inlet port 13 side (molecular-pump mechanism portion 10A side), a thread-groove spacer 32 provided on the outlet port 14 side (thread-groove type pump mechanism portion 10B side), a stator of the motor portion 25, stators of the radial magnetic-bearing portions 26, 27, a stator of the axial magnetic-bearing portion 28, stators of the radial displacement sensors 29, 30, a collar 36, a stator column 35 and the like.
The stator blade 31 is constituted by a blade 33 inclined only by a predetermined angle from a plane perpendicular to an axis of the rotating shaft 20 and extending from the inner peripheral surface of the casing 11 toward the rotating shaft 20. Moreover, regarding the stator blades 31, in the molecular-pump mechanism portion 10A, the blades 33 are formed in plural stages alternately with the blades 22 of the rotor blades 19 in the axis direction. The blade 33 on each stage is separated from each other by a spacer 34 having a cylindrical shape.
The thread-groove spacer 32 is a columnar member in which a spiral groove 32a is formed in an inner peripheral surface. The inner peripheral surface of the thread-groove spacer 32 is configured to face the outer peripheral surface of the second cylinder portion 21b in the cylinder member 21 with a predetermined clearance (gap) between them. A direction of the spiral groove 32a formed in the thread-groove spacer 32 is a direction toward the outlet port 14 when the gas is transported in a rotating direction of the rotating body 18 in the spiral groove 32a. A depth of the spiral groove 32a is configured to become shallower as it gets closer to the outlet port 14 so that the gas transported through the spiral groove 32a is compressed as it gets closer to the outlet port 14.
The stator blade 31 and the thread-groove spacer 32 are constituted by using metal such as stainless, an aluminum alloy and the like.
The pump base 11B is a member having a substantially short cylindrical shape having an opening 39 penetrating at a center in an up-down direction. On an upper surface side of the pump base 11B, the stator column 35 having a cylindrical shape is mounted concentrically with a rotation axis of the stator body 17 by inserting the lower end side into the opening 39 for engagement and by directing the upper surface side to a direction of the inlet port 13. The stator column 35 supports the parts on the stator sides of the motor portion 25, the radial magnetic-bearing portions 26, 27, and the radial displacement sensors 29, 30. On the other hand, on the lower surface side of the pump base 11B, the base end lid 11C is mounted by the mounting bolt 41 and is integrated with the pump base 11B. That is, the base end lid 11C forms the casing 11 together with the pump case 11A and the pump base 11B.
In the motor portion 25, stator coils with predetermined pole numbers are disposed at equal intervals on the inner peripheral sides of the stator coils so that a rotating magnetic field can be generated around the magnetic pole formed on the rotating shaft 20. Moreover, on the outer periphery of the stator coil, the collar 36, which is a cylinder member constituted by metal such as stainless, is disposed so as to protect the motor portion 25.
The radial magnetic-bearing portions 26, 27 are constituted by coils disposed at every 90 degrees around the rotating axis. The radial magnetic-bearing portions 26, 27 magnetically float the rotating shaft 20 in the radial direction by attracting the rotating shaft 20 by a magnetic field generated by these coils.
On a bottom part of the stator column 35, the axial magnetic-bearing portion 28 is formed. The axial magnetic-bearing portion 28 is constituted by a disc extending from the rotating shaft 20 and coils disposed above and below this disc. When the magnetic field generated by these coils attract this disc, the rotating shaft 20 is magnetically floated in the axis direction.
On the inlet port 13 of the casing 11, the flange 15 extending to an outer peripheral side of the pump case 11A is formed. In the flange 15, a bolt hole 37 through which a bolt, not shown, is inserted, and an annular groove 38 to which an O-ring for keeping airtightness with a flange on a vacuum vessel side, also not shown, is attached are formed.
At a center of the base end lid 11C, a cooling-rod mounting hole 42 is formed, and a cooling rod 43 is closely fixed and attached to the cooling-rod mounting hole 42 without a gap from the cooling-rod mounting hole 42 so that the degree of vacuum inside the vacuum pump 10 is not lowered. Note that the mounting of the base end lid 11C and the cooling rod 43 are, for example, integrated by fabricating completely integrally or by welding, brazing or the like. The base end lid 11C integrated with the cooling rod 43 is closely connected to the pump base 11B without a gap through an O-ring 40.
The cooling rod 43 is formed having a rod shape with an outer diameter smaller than an inner diameter of the hollow part 20b formed in the rotating shaft 20. Regarding the cooling rod 43, an upper end side penetrates the axial magnetic-bearing portion 28 and is inserted/disposed in the hollow part 20b from a lower end side of the rotating shaft 20 in a state of non-contact with the axial magnetic-bearing portion 28 and the rotating shaft 20, a lower end side is fixed to the base end lid 11C, which is a part of the casing 11, and moreover, an end portion 43a of the cooling rod 43 is led out to an outside of the casing 11. In this way, the outer peripheral surface of the cooling rod 43 inserted into the hollow part 20b and the inner peripheral surface of the hollow part 20b are not in contact with each other, and a gap σ is provided between the outer peripheral surface of the cooling rod 43 and the inner peripheral surface of the hollow part 20b.
The cooling rod 43 is not the one that injects a refrigerant or the like into the gap between the cooling rod 43 and the rotating body 18 but absorbs a radiation heat from the rotating shaft 20. The heat inside the cooling rod 43 is radiated to an outside through the end portion withdrawn from a lower surface of the base end lid 11C. That is, when heat generation occurs on the rotating body 18 side and the rotating shaft 20 is heated, the cooling rod 43 absorbs the radiation heat from the rotating shaft 20 and takes the heat away from the rotating shaft 20, and by radiating the absorbed heat to the outside, it can cool the rotating shaft 20 and the rotating body 18 side so that the temperatures thereof do not rise to a predetermined temperature or more.
Note that, as the cooling rod 43, those of metal in general with good heat transfer characteristics such as aluminum (Al), an aluminum alloy, copper (Au), a copper alloy, a beryllium alloy and the like, for example, may be used. Moreover, it may be such a structure that the inside of the cooling rod 43 is made hollow, and air, water, ethylene glycol (C2H6O2) or the like is sealed as the refrigerant inside the hollow.
On the other hand, for the purpose of facilitating transfer of the radiation heat, the rotating shaft 20 may be formed of ceramic, carbon or the like, and moreover, coating treatment of a black paint or ceramic coating treatment, black nickel-plating treatment, anodization treatment, resin painting treatment or the like is preferably applied to the inner peripheral surface of the hollow part 20b opposed to the outer peripheral surface of the cooling rod 43.
The vacuum pump 10 constituted as above operates as follows and exhausts a gas from the vacuum vessel.
First, the radial magnetic-bearing portions 26, 27 and the axial magnetic-bearing portion 28 magnetically float the entirety of the rotating body 18 through the rotating shaft 20 so as to support the rotating body 18 in a non-contact manner in the space.
Subsequently, the motor portion 25 operates and rotates the rotating shaft 20 in a predetermined direction. That is, it rotates the rotating body 18 in the predetermined direction. A rotational speed is approximately 30,000 rotations per minute, for example. In this example, the rotating direction of the rotating body 18 is supposed to be a clockwise direction when seen from the inlet port side, but the vacuum pump 10 can be configured so as to rotate in a counterclockwise direction.
When the rotating body 18 rotates, by means of actions of the blade 22 of the rotor blade 19 and the blade 33 of the stator blade 31 in the stator body 17, the gas is sucked through the inlet port 13 and is compressed more as it goes to a lower stage. The gas compressed in the molecular-pump mechanism portion 10A is further compressed in the thread-groove type pump mechanism portion 10B and is exhausted through the outlet port 14.
By the way, in the vacuum pump 10, a heat is generated when the gas is compressed in the vacuum pump. Moreover, by means of heat generation from the coils and the rotors of the motor portion 25, the coils of the radial magnetic-bearing portions 26, 27, the coils and rotors of the axial magnetic-bearing portion 28 and the like, the entire rotating body 18 including the rotating shaft 20 generates heat. Thus, there is a concern that lowering of an output or the motor, rotation vibration and the like can easily occur. Then, in order to solve this problem, it becomes necessary to remove the heat on the rotating body 18 side and to cool a temperature of the entire rotating body 18 to a required temperature.
In the vacuum pump 10 in this example, the cooling rod 43 is inserted/disposed in the hollow part 20b from the lower end side of the rotating shaft 20. Since the cooling rod 43 is inserted/disposed in the hollow part 20b, the heat generated in the rotating body 18 is transferred to the cooling rod 43 as the radiation heat, and this radiation heat is received and absorbed by the cooling rod 43. The heat absorbed by the cooling rod 43 is transferred inside of the cooling rod 43 and is caused to escape to the outside through the end portion 43a withdrawn to the outer side of the casing 11 from the lower surface of the base end lid 11C. In this way, since the cooling rod 43 absorbs the heat on the rotating body 18 side and causes it to escape to the outside of the casing 11, the temperature on the rotating body 18 side is cooled and kept so as not to rise, and the entire rotating body 18 can be kept at the predetermined temperature or less at all time. As a result, lowering of the output of the motor portion 25 or generation of rotation vibration of the rotating body 18 can be prevented.
Moreover, since it is no such a structure that injects the refrigerant into the hollow part 20b, there is no need to apply the seal structure which prevents leakage of the refrigerant between the stator body 17 and the rotating body 18 or between the cooling rod 43 and the rotating body 18, and size reduction and cost down can be realized. Furthermore, since there is no directly intruding refrigerant on the airgap side of the motor portion 25 or the like and the sides of the rotor blade 19, the stator blade 31 and the like, the rotating body 18 can be cooled without lowering the degree of vacuum, and the vacuum pump 10 can be driven with high accuracy. Moreover, since there is no refrigerant in direct contact with the rotating body 18 and the stator body 17, erosion of the rotating body 18 or the stator body 17 can be prevented, and durability can be improved.
Note that, in the vacuum pump 10 in this example, such a structure that the base end lid 11C and the cooling rod 43 are integrated is disclosed, but if the cooling rod 43 and the base end lid 11C are simply integrated, there is a concern that the heat on the casing 11 side is transferred from the base end lid 11C to the cooling rod 43 between the cooling rod 43 and the base end lid 11C, whereby the cooling rod 43 is heated. In order to prevent this, the base end lid 11C is preferably constituted as shown in
That is,
The base end lid 11C shown in
In the structure of the vacuum pump 10 shown in
Moreover, the vacuum pump 10 shown in
In the vacuum pump 10 shown in
The heat radiation mechanism 44B shown in
The heat radiation mechanism 44C shown in
In
And the heat pipe 49 in the vacuum pump 10 shown in
As described above, in the vacuum pump 10 using the cooling rod 43 in which the heat pipe 49 is embedded, the heat generated in the rotating body 18 is transferred as the radiation heat to the cooling rod 43, this is received by the high temperature portion 49a, which is the heat absorbing portion of the heat pipe 49, is moved to the low temperature portion 49b, which is the heat radiation portion, and is cooled. The heat cooled in the low temperature portion 49b returns to the high temperature portion 49a and cools the high temperature portion 49a, whereby the cooling rod 43 is cooled at the same time. By means of this cooling of the cooling rod 43, the temperature on the rotating body 18 side is also kept so as not to become the predetermined temperature or more, and the entire rotating body 18 can be kept at the predetermined temperature or less at all time. As a result, lowering of the output of the motor portion 25 or generation of rotation vibration of the rotating body 18 can be prevented.
Note that, in the variation in
Moreover, in the variation shown in
That is, the variation shown in
In this structure, the purge gas 50 to be caused to flow through the gap σ between the cooling rod 43 and the hollow part 20b of the rotating shaft 20 is caused to flow into the hollow part 20b from the lower end side of the rotating shaft 20 toward the upper end side, without remaining at a same position in the gap σ, and turns back at the upper end side in the hollow part 20b and goes out of the hollow part 20b again from the lower end side. As a result, in the casing 11, the cooling rod 43 absorbs the radiation heat of the rotating body 18, and by means of the absorption of the heat by the flow of the purge gas 50, both of the following cooling effects, the cooling effect by the cooling rod 43 and the cooling effect by the purge gas 50, can be obtained. The purge gas can directly intrude to the airgap side of the motor portion or the like and the sides of the rotor blades and the like. A type of the purge gas which is preferable for prevention of erosion of the components by the purge gas is nitrogen or the like, which is an inactive gas, for example.
Moreover, in the structure in which the purge gas 50 is caused to flow through the gap σ between the cooling rod 43 and the hollow part 20b of the rotating shaft 20 shown in
Moreover, in the structure in which the purge gas 50 is caused to flow through the gap σ between the cooling rod 43 and the hollow part 20b of the rotating shaft 20 shown in
The vacuum pump 10 shown in
The refrigerant piping 51 is a pipe-shaped member in which a refrigerant 52 can be passed through. The refrigerant piping 51 is laid, as shown in
And the refrigerant inlet portion 51a and the refrigerant outlet portion 51b of the refrigerant piping 51 are connected to a refrigerant exhaust port and a refrigerant return port of a refrigerant machine, none of them being shown, and the refrigerant 52 exhausted from the refrigerant exhaust port of the refrigerant machine is sent into the refrigerant piping 51 from the refrigerant inlet portion 51a of the refrigerant piping 51, passes through the inside of the refrigerant piping 51, is exhausted from the refrigerant outlet portion 51b, and returns to the refrigerant return port of the refrigerant machine.
And in the vacuum pump 10 using the cooling rod 43 shown in
Note that the refrigerant piping 51 may be provided in plural and may have a structure branching from/merging with the refrigerant machine.
The vacuum pump 10 shown in
Note that the members in
In the vacuum pump 10 shown in
When the fins 43b are provided on the outer peripheral surface of the cooling rod 43 as in the vacuum pump 10 shown in
Note that, instead of provision of the fins 43b on the outer periphery of the cooling rod 43 as in the vacuum pump 10 shown in
Moreover, in the vacuum pump 10 shown in
In more detail,
In the vacuum pump 10 shown in
Note that the members in
In the vacuum pump 10 shown in
Note that the members in
In the vacuum pump 10 shown in
The spots requiring the cooling of the rotating body are some or all the spots such as heat generation portions and the like of the motor portion, the radial magnetic-bearing portion, the axial magnetic-bearing portion, the rotor blade portion and the like, for example. If the heat generation at the motor portion is larger than the heat generation of the radial magnetic-bearing portion and the axial magnetic bearing portion, for example, it is suitable that only the motor portion is cooled. Moreover, in the vacuum pump, the rotor blade is heated in order to prevent adhesion of products in some cases, but in such cases, it is suitable that the rotor blade is not cooled. The spots not requiring the cooling of the rotating body are spots of the rotating body other than the spots requiring the cooling of the rotating body.
Note that the present disclosure is capable of various alterations as long as they do not depart from the spirit of the present disclosure, and it is natural that the present disclosure includes those altered.
Number | Date | Country | Kind |
---|---|---|---|
2020-009524 | Jan 2020 | JP | national |
This application is a U.S. national phase application under 35 U.S.C. § 371 of international application number PCT/JP2021/001915 filed on Jan. 20, 2021, which claims the benefit of JP application number 2020-009524 filed on Jan. 23, 2020. The entire contents of each of international application number PCT/JP2021/001915 and JP application number 2020-009524 are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/001915 | 1/20/2021 | WO |