Cosmetic materials such as those used for cosmetic foundation are typically provided as a compacted or a loose powder. Loose materials, including loose powder, are becoming more common due in part to the fact that loose material provides improved coverage of the material on a surface. The loose material may be provided in a container with a perforated surface or sifter so that the powder is shaken out of the perforations and the powder can be applied onto an applicator. This configuration is problematic in that the loose material has a tendency to move up through the perforations during handling and/or jostling of the container, such as the movements associated with carrying the container in a handbag, pocket, or purse. The loose material may deposit above the perforated surface and/or on the cap and may at least partially spill out when the container is opened.
This disclosure relates to containers usable for holding and dispensing, among other things, powdered or powder-like cosmetics products. According to one exemplary implementation, a container is disclosed that has a bottom portion, a bottom sifter, a dial sifter and a removable cover having pins. The cover has a radially extending top portion, and an axially extending side wall portion. The bottom sifter is engaged with the bottom portion and has at least one sifting hole for sifting materials with a powder-like consistency. The dial sifter is rotatably engaged with the bottom sifter and has at least one sifting hole to align with the at least one sifting hole in the bottom sifter. In an implementation, either the surface of the bottom sifter facing the dial sifter or the surface of the dial sifter facing the bottom sifter has at least one raised portion, and the remaining surface has at least one recessed depression. In other implementations, neither surface of the dial sifter, or the bottom sifter, or both sifters may have a raised portion or a recessed depression. When present, the raised portion and the recessed depression operate to inhibit the dial sifter from rotating relative to the bottom sifter, and to align the sifting holes in the dial sifter and the bottom sifter when the container is open. The upper surface of the dial has one or more axially extending cavities to align and engage axially protruding pins in the cover. When the cover is rotated, the axially protruding pins extend into the axially extending cavities on the dial surface. The dial may rotate with the rotation of the cover, such that when the cover is rotated into a closed position the dial is rotated in relation to the bottom sifter to offset the holes in the bottom sifter and the holes in the dial. When the cover is rotated into an open position the dial is rotated in relation to the bottom sifter to align the holes in the bottom sifter with the holes in the dial.
According to another exemplary implementation, a container is disclosed that is configured to be filled from the bottom of the container. This implementation includes a container having a top portion, an open bottom portion, a rotating sifter mechanism engaged with the top portion, a cover for enclosing the top portion, and a bottom cap for enclosing the open bottom portion. The rotating sifter mechanism includes a bottom sifter and a dial sifter, the dial sifter being engaged with the cover. Material may be supplied to the open bottom portion. The bottom cap is then affixed to the open bottom portion to enclose the material within the container.
Containers having rotating sifter mechanisms will now be described with reference to the figures. While the disclosure is described in the context of sifters for powdered cosmetics products, they may be useful for other powdered or powder-like products, such as baby powder, foot powder, medicinal powders, and the like.
In this exemplary implementation, the surface of the bottom sifter 116 facing the dial sifter 118 has at least one raised portion 126, which may be a co-molded thermoplastic elastomer (TPE), centrally aligned with each of the at least one sifting hole 120 in the bottom sifter 116. The surface of the dial sifter 118 facing the bottom sifter 116 has at least one recessed depression 128 centrally aligned with each of the at least one hole 124 in the dial sifter 118. The at least one raised portion 126 on the bottom sifter 116 is capable of engaging the at least one recessed depression 128 in the dial sifter 118, thus aligning and maintaining alignment of the at least one hole 120 in the bottom sifter 116 with the at least one hole 124 in the dial sifter 118 while in an open position. Alternatively, the at least one raised portion 126 on the bottom sifter 116 is capable of engaging the at least one recessed depression 128 in the dial sifter 118, thus offsetting and maintaining offset of the at least one hole 120 in the bottom sifter 116 with the at least one hole 124 in the dial sifter 118 while in a closed position. The tension associated with the engagement of the at least one raised portion 126 with the at least one recessed depression 128 is overcome by a predetermined force in order to release the engagement of the at least one raised portion 126 with the at least one recessed depression 128, to rotate or change the position of the dial sifter 118 relative to the bottom sifter 116 during opening or closing of the container 110. The engagement may reduce inadvertent alignment or misalignment of the dial sifter 118 and the bottom sifter 116 caused by, for example, incidental force or contact.
The implementation described above is exemplary only and is not intended to be limiting. For example, the at least one raised portion 126 may be provided on the dial sifter 118 and the at least one recessed depression 128 may be provided on the bottom sifter 116. In another alternative implementation, the at least one raised portion 126 may be aligned in an offset or eccentric manner relative to the at least one sifting hole in the sifter, or with respect to the surface of the sifter. Additionally, the at least one raised portion 126 may have any shape such as a teardrop shape, an offset oval, or the like. In such an instance, the alignment and shape of the at least one recessed depression on one sifter may correspond to the alignment and shape eccentricities of the corresponding at least one raised portion on the other sifter, resulting in secure engagement of the sifters. Further, the at least one recessed depression may have a hollow cylindrical form, allowing it to securely engage with multiple possible shapes of raised portions on the opposite sifter. Moreover, the recessed depression may be provided at the end of a pedestal 129 extending axially away from the surface of the dial sifter 118. This creates a flush contact between the dial sifter 118 and the bottom sifter 116 even if the two sifters have different surface contours. In alternate implementations, neither surface of the dial sifter 118, or the bottom sifter 116, nor both sifters may have a raised portion 126 or a recessed depression 128.
The container 110 is provided with a mechanism to rotate the dial sifter 118 in relation to the bottom sifter 116 so that the sifting holes 120 and 124 are aligned when the container 110 is “open” to allow a user to access the powder. When the container 110 is “closed,” the sifting holes 120 and 124 are rotated out of alignment, which prevents powder from traveling from the bottom portion 114 through the bottom sifter 116 and the dial sifter 118. In order to rotate the dial sifter 118 while opening or closing the container 110, the dial sifter 118 has at least one axially extending cavity 130 in the surface facing away from the bottom portion 114. The cover 112 has at least one axially protruding pin 132, shown in
The bottom sifter 116 is secured or fixed to the bottom portion 114 by friction, glue, threaded engagement, or other suitable means. As shown in
The dial sifter 118 is secured to the bottom sifter 116 by friction or other suitable means. The dial sifter 118 may additionally be secured to the bottom sifter 116 by a pin 136 protruding from the center of the surface of the dial sifter 118 facing the bottom sifter 116. The pin 136 extends through a hole 138 in the center of the bottom sifter 116, as shown in
The dial sifter 118 has a rim portion 144 that extends around the upper surface of the dial sifter 118. At least one axial cavity 130 is positioned along the rim portion 144. Additionally, there is a guide channel 146 positioned along the surface of the rim portion 144, concentric to the circumference of the dial sifter 118. The guide channel 146 intersects the at least one cavity 130. The at least one pin 132, which may be a polypropylene material, is configured to be axially protruding from the cover 112 to extend into the guide channel 146 when the cover 112 is positioned. During rotation of the cover 112, the at least one pin 132 is guided along the guide channel 146 and may be in a spring-compression state caused by the deflection of the at least one pin 132 toward the cover 112 and one or more spring members 133 toward the pin 132. In the spring-compression state, the at least one pin 132 may experience a higher level of compression than when the cover 112 is not engaged with the dial sifter 118. Further rotation of the cover 112 allows the at least one pin 132 to encounter and engage the at least one cavity 130, thus releasing at least a portion of the spring compression on the at least one pin 132, extending it into the at least one cavity 130, and rotatably securing the cover 112 directly to the dial sifter 118. Rotation of the cover 112 thus rotates the dial sifter 118. Additionally, the cover 112 has a threaded portion 148, shown in
In an exemplary implementation, the dial sifter 118 has a hollow, sloped, or concave surface 152 on the side of the dial sifter 118 facing away from the bottom sifter 116, i.e., the surface facing upward from the bottom portion 114. This surface 152 assists in directing powder or other material into the at least one hole 124 and, thus, into the loose material holding cavity 122. This hollowed or sloped surface 152 reduces the amount of powder or other material above the dial sifter 118 when the container 110 is held in an upright position, such as when a user is preparing to close the container 110. Reducing the amount of powder above the dial sifter 118 and maintaining the holes 120 and 124 in an offset configuration while the cover is closed reduces the amount of powder that may be spilled while the container 110 is closed or when the container 110 is initially opened. In other implementations, the dial sifter 118 does not have a hollow, sloped, or concave surface 152 on either side.
The cover 112 has a sealing layer 154 engaged with the cover 112 for pressing or touching the dial sifter 118 to further prevent the unintentional spillage of powder from the container 110. Additionally, there may be a ring-shaped gasket 156 between the dial sifter and the bottom sifter to prevent material from leaking around the sifters.
As shown in
The bottom portion 114, bottom sifter 116, dial sifter 118, and cover 112 may be constructed of polypropylene, polyethylene, other plastic, glass, wood, or other suitable material and may be molded or formed according to conventional methods. The sealing layer 154 may be waxed paperboard, Teflon, or other suitable material.
Although details of specific implementations and embodiments are described above, such details are intended to satisfy statutory disclosure obligations rather than to limit the scope of the following claims. Thus, the claims are not limited to the specific features described above.
Number | Name | Date | Kind |
---|---|---|---|
1156456 | Beck | Oct 1915 | A |
1274697 | Dynowsky | Aug 1918 | A |
1357306 | Aste | Nov 1920 | A |
1620002 | Barany | Mar 1927 | A |
1642780 | Kole et al. | Sep 1927 | A |
1668658 | Reutter | May 1928 | A |
2817451 | Giles | Dec 1957 | A |
3100589 | Love | Aug 1963 | A |
3276642 | Johnson | Oct 1966 | A |
4626119 | Ladd, Jr. | Dec 1986 | A |
4630954 | Ladd, Jr. | Dec 1986 | A |
4630955 | Ladd, Jr. et al. | Dec 1986 | A |
4647240 | Ladd, Jr. et al. | Mar 1987 | A |
4652162 | Ladd, Jr. et al. | Mar 1987 | A |
4671690 | Ladd, Jr. et al. | Jun 1987 | A |
4728211 | Ladd, Jr. | Mar 1988 | A |
4888668 | Roll | Dec 1989 | A |
5515876 | Warner et al. | May 1996 | A |
5975368 | Wood | Nov 1999 | A |
6053183 | Rizzo | Apr 2000 | A |
6929159 | Haig | Aug 2005 | B1 |
7494030 | Bennett | Feb 2009 | B2 |
20060278665 | Bennett | Dec 2006 | A1 |
20070205233 | Petit et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2911766 | Aug 2008 | FR |
2446039 | Jul 2008 | GB |
Number | Date | Country | |
---|---|---|---|
20090188518 A1 | Jul 2009 | US |