This invention relates to cone crushers used for crushing rocks and, more specifically, feed distributors used in combination with rock crushers and other devices.
Generally, a belt conveyor or feeder delivers rocks and stones into a crusher. The rocks will ride up the conveyor, whose end is located above the input of the crusher. The rocks are dumped under the force of gravity into the crusher, which will then break the rocks into a predetermined size. Preferably, the uncrushed rocks will first pass through a feed distributor, which will assist in dispersing the uncrushed rocks into the crusher.
Since rocks fed into the crusher are not always of the same size and shape, they will not necessarily be crushed to a final uniform size. However, it is preferable to have the crushed rocks be within a relative range and size; otherwise the rocks and stones need to be recrushed. Furthermore, the final crushed rock product should preferably have a uniform gradation of rock sizes and shapes, rather than having a batch of stones that may contain very fine dust as a product and another batch that only contains larger rocks. Such segregation of the rocks is not advantageous as it can lead to a less saleable end product. In the event the rocks are too large for specifications, the rocks will be recycled back into the crusher to be crushed again.
To alleviate problems of nonuniformity, previous designs and inventions have focused on improving the crushers so that the resultant crushed rocks will be more uniform in size. However, it has been observed that one of the reasons for inconsistent crushed rock gradation is that the uncrushed rocks are not evenly distributed as they fall into the crusher and instead arrive in the crusher in a segregated fashion. Rocks will generally fall into the crusher under the force of gravity, which means small rocks will fall together and larger rocks will separately fall together. Consequently, the rocks will not be evenly distributed, which leads to potentially uneven crushing of the rocks. Rocks outside of a predetermined range will need to be recycled or re-crushed, which is not an efficient process.
Premature wear of the specific parts of prior feed distributors is also a problem. When rocks fall upon the feed distributor and the chute used in the distributor, the impact tends to wear and erode the feed distributor's components. The rock crushing environment creates excess and abrasive dust which can also lead to premature wear of certain machine elements, such as bearings. As a result feed distributor components need to be replaced, which leads to more downtime of the system and, consequently, reduces the efficiency of the overall system.
Previous inventions, such as Sawant et al., U.S. Pat. No. 7,040,562, owned by the same assignee as the present invention, disclose rotating feed distributors. However, depending upon the environment where it is operated, the device in Sawant may require frequent maintenance. This is not desirable as the entire rock crushing process must be halted while the rotating feed distributor is attended to.
Other previous inventions, such as Ryan et al., U.S. Pat. No. 6,227,472, discuss devices that will spin rocks into the sides of the crusher. However, the device in Ryan causes buildup within the device, and, since the device is located within the crusher, is not easily cleaned or serviced. Other devices, such as Kemnitz, U.S. Pat. No. 4,106,707, contemplate feed distributors, but do not allow for control and efficiency as is found in the present invention. Furthermore, prior art designs have been observed to comprise drive means that are susceptible to dust and dirt and may unduly slip when driving the feed distributor, such as Gasparac et al., U.S. Pat. No. 3,212,720. The present invention addresses this issue by introducing a system for evenly distributing feed rocks into a crusher.
The present invention provides an improved feed distributor for use in connection with rock crushers. The feed distributor sits beneath the top end or output end of a conveyor or feeder used in conjunction with a rock crusher. The conveyor or feeder delivers rocks from a supply source to the distributor that is positioned over the crusher. The feed distributor receives the rocks onto its feed platform, where the rocks travel from the feed platform into a feed chute comprising an inlet and an outlet. The feed chute has an outer tube and an inner tube, with the outer tube rotating and the inner tube being relatively stationary. The outer tube is driven by a motor coupled to a gear reducer. The use of the two tubes lessens the wear on the feed distributor. The rotating outer tube allows the rocks to be evenly distributed into the rock crusher and reduces segregation of rock size, which improves the efficiency of the rock crusher and reduces operating cost.
The feed distributor provides for an even distribution of the rocks before entering the crusher, thereby minimizing uneven rock buildup within the crusher and further minimizing the need for recycling or re-crushing of rocks that are not crushed within predetermined size limitations. The feed distributor is further designed to protect the power means, support means and drive system from abrasive dust and other rock particles, thereby reducing the overall wear on the feed distributor. The arrangement of the drive belts and bearings of the feed distributor also provides for a reliable and low maintenance drive system.
The feed distributor includes a sheave structure coupled around the rotating outer tube. The sheave structure has a substantially horizontal flange and a substantially vertical face. Preferably, the flange and face are orthogonal to one another. The sheave structure is supported on its flange by a plurality of thrust bearings mounted to the feed distributor housing. Thus the rotating outer tube is supported by the thrust bearings. The sheave structure receives one or more drive belts driven by a power means, such as a motor and gear reducer assembly. The distance between the power means and rotating outer tube is maintained by a plurality of roller bearings circumferentially arranged about the sheave structure.
The feed distributor improves both the performance and the efficiency of the rock crusher. The design of the feed distributor also consumes less power, reduces wear, extends maintenance intervals, reduces abuse to the crusher and makes more cubical products when compared to prior art feed distributors. This in turn reduces operating cost/ton of product and increases the yield of sellable product tonnage.
The feed distributor 18 has three main areas that the rocks will encounter when proceeding towards the crusher 20: a feed platform or box 26, an inlet 28, and an outlet 30. The inlet 28 and the outlet 30 generally are opposing sections of a tubular chute 32 containing a coextensive bore within the chute 32, which will be described in more detail with respect to the subsequent figures. When rocks 12 enter into the distributor 18, as shown in
Again referring to
The inlet 28 and the outlet 30 comprise the tubular chute 32. Located within the inlet 28 is an optional stationary tube or wear sleeve 62. The stationary tube or wear sleeve 62 preferably extends a distance above the inlet 28 and also a distance below the inlet 28. The reinforced lip 34 formed along the upper edge of the wear sleeve 62 helps to extend the life of the inlet 28. When the wear sleeve 62 is employed in the feed distributor 18, the previously described lip 34 is located at the top of the wear sleeve 62. While the wear sleeve 62 may be secured to the inlet 28, it preferably rests upon the feed platform 26. A laterally extending flange 64 assists in the wear sleeve 62 resting on the feed platform 26. When it becomes worn down, the wear sleeve 62 may be easily removed and replaced with a new sleeve.
As shown in
As also shown in
Tubular chute 32 is vertically supported by at least three thrust bearings 100. Each bearing 100 has a bearing surface 102 formed from a composite material commercially known as PEEK. Bearing surfaces 102 support the flange 58 formed on the sheave structure 54 that is coupled to the tubular chute 32.
The platform 26, as shown in
Further in
The outlet 30 is relatively large, thereby increasing throughput capacity of the distributor 18.
Referring further to
While is has been found that the presence of lubricant reduces an audible hum from the feed distributor during operation, it is not necessary to supply lubricant to any of the thrust bearings 100 during operation of the feed distributor 18. In other words, the performance of the feed distributor remains the same with or without the presence of lubricant at the interface of the flange portion 58 and thrust bearing surface 102.
As further shown in
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
1920488 | Symons | Aug 1933 | A |
2207858 | Gruender | Jul 1940 | A |
2656120 | Roubal | Oct 1953 | A |
3212720 | Gasparac et al. | Oct 1965 | A |
3358939 | Gasparac et al. | Dec 1967 | A |
3614023 | Archer et al. | Oct 1971 | A |
3785578 | Kemnitz | Jan 1974 | A |
3813046 | Kemnitz et al. | May 1974 | A |
3834631 | King | Sep 1974 | A |
3951348 | Davis et al. | Apr 1976 | A |
3957213 | Stockman et al. | May 1976 | A |
3985308 | Davis et al. | Oct 1976 | A |
3985309 | Davis et al. | Oct 1976 | A |
4012000 | Davis et al. | Mar 1977 | A |
4106707 | Kemnitz | Aug 1978 | A |
4575013 | Bartley | Mar 1986 | A |
4662571 | MacDonald et al. | May 1987 | A |
4697745 | Sawant et al. | Oct 1987 | A |
4739937 | Carpenter et al. | Apr 1988 | A |
4750681 | Sawant et al. | Jun 1988 | A |
4754932 | Kmiotek et al. | Jul 1988 | A |
5137220 | Rose et al. | Aug 1992 | A |
5277370 | Schatz | Jan 1994 | A |
6129297 | Sawant et al. | Oct 2000 | A |
6213418 | Gabriel et al. | Apr 2001 | B1 |
6227472 | Ryan et al. | May 2001 | B1 |
7040562 | Sawant et al. | May 2006 | B2 |