Rotating filter for a dishwasher

Information

  • Patent Grant
  • 10076226
  • Patent Number
    10,076,226
  • Date Filed
    Monday, December 14, 2015
    9 years ago
  • Date Issued
    Tuesday, September 18, 2018
    6 years ago
Abstract
A dishwasher with a tub at least partially defining a washing chamber, a liquid spraying system, a liquid recirculation system defining a recirculation flow path, and a liquid filtering system. The liquid filtering system includes a rotating filter disposed in the recirculation flow path to filter the liquid.
Description
BACKGROUND OF THE INVENTION

A dishwasher is a domestic appliance into which dishes and other cooking and eating wares (e.g., plates, bowls, glasses, flatware, pots, pans, bowls, etc.) are placed to be washed. The dishwasher may include a filter system to remove soils from liquid circulated onto the dishes.


BRIEF DESCRIPTION OF THE INVENTION

In one embodiment, a dishwasher for treating dishes according to at least one automatic cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit, a rotating filter located within the circulation circuit such that the circulated liquid passes through the filter from an upstream surface to a downstream surface, a diverter extending along and spaced away from at least a portion of at least one of the upstream and downstream surfaces to define a gap between the diverter and the filter, and a diverter mount operably coupling the diverter to the filter such that there is only one tolerance stack up between at least one portion of the diverter and one portion of the filter that effects the gap.


In another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer, a rotating filter located within the circulation circuit such that the circulated liquid passes through the filter from an upstream surface to a downstream surface as the filter rotates, and a first diverter extending along and positioned away from at least a portion of at least one of the upstream and downstream surfaces to define a gap, with at least a first portion of the first diverter in a floating relative relationship with the filter.


In yet another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer, a rotating filter comprising a frame supporting a screen, with the frame having at least one filter bearing surface extending beyond the screen, and the filter located within the circulation circuit such that the circulated liquid passes through the screen from an upstream surface to a downstream surface as the filter rotates, a first diverter extending along at least a portion of one of the upstream and downstream surfaces, and having a diverter bearing surface, and a biasing device relatively biasing the rotating filter and the first diverter such that the filter bearing surface and the diverter bearing surface contact.


In another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit, a rotating filter comprising a body in which are provided a plurality of openings, and the filter located within the circulation circuit such that the circulated liquid passes through the screen from an upstream surface to a downstream surface as the filter rotates, and a first diverter extending along at least a portion of one of the upstream and downstream surfaces, and having a diverter bearing surface.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a schematic, cross-sectional view of a dishwasher according to a first embodiment of the invention.



FIG. 2 is a schematic view of a controller of the dishwasher of FIG. 1.



FIG. 3 is a perspective view of an embodiment of a pump and filter assembly of the dishwasher of FIG. 1 with portions cut away for clarity.



FIG. 4 is an exploded view of the pump and filter assembly of FIG. 2.



FIG. 5 is a cross-sectional view of the pump and filter assembly of FIG. 2 taken along the line 5-5 shown in FIG. 3.



FIG. 6 is a cross-sectional elevation view of a portion of the pump and filter assembly of FIG. 3.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In FIG. 1, an automated dishwasher 10 according to a first embodiment is illustrated. The dishwasher 10 shares many features of a conventional automated dishwasher, which will not be described in detail herein except as necessary for a complete understanding of the invention. A chassis 12 may define an interior of the dishwasher 10 and may include a frame, with or without panels mounted to the frame. An open-faced tub 14 may be provided within the chassis 12 and may at least partially define a treating chamber 16, having an open face, for washing dishes. A door assembly 18 may be movably mounted to the dishwasher 10 for movement between opened and closed positions to selectively open and close the open face of the tub 14. Thus, the door assembly provides accessibility to the treating chamber 16 for the loading and unloading of dishes or other washable items.


It should be appreciated that the door assembly 18 may be secured to the lower front edge of the chassis 12 or to the lower front edge of the tub 14 via a hinge assembly (not shown) configured to pivot the door assembly 18. When the door assembly 18 is closed, user access to the treating chamber 16 may be prevented, whereas user access to the treating chamber 16 may be permitted when the door assembly 18 is open.


Dish holders, illustrated in the form of upper and lower dish racks 26, 28, are located within the treating chamber 16 and receive dishes for washing. The upper and lower racks 26, 28 are typically mounted for slidable movement in and out of the treating chamber 16 for ease of loading and unloading. Other dish holders may be provided, such as a silverware basket. As used in this description, the term “dish(es)” is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation, dishes, plates, pots, bowls, pans, glassware, and silverware.


A spray system is provided for spraying liquid in the treating chamber 16 and includes sprayers provided in the form of a first lower spray assembly 34, a second lower spray assembly 36, a rotating mid-level spray arm assembly 38, and/or an upper spray arm assembly 40, which are proximate to the tub 14 to spray liquid into the treating chamber 16. Upper spray arm assembly 40, mid-level spray arm assembly 38 and lower spray assembly 34 are located, respectively, above the upper rack 26, beneath the upper rack 26, and beneath the lower rack 24 and are illustrated as rotating spray arms. The second lower spray assembly 36 is illustrated as being located adjacent the lower dish rack 28 toward the rear of the treating chamber 16. The second lower spray assembly 36 is illustrated as including a vertically oriented distribution header or spray manifold 44. Such a spray manifold is set forth in detail in U.S. Pat. No. 7,594,513, issued Sep. 29, 2009, and titled “Multiple Wash Zone Dishwasher,” which is incorporated herein by reference in its entirety.


A recirculation system is provided for recirculating liquid from the treating chamber 16 to the spray system. The recirculation system may include a sump 30 and a pump assembly 31. The sump 30 collects the liquid sprayed in the treating chamber 16 and may be formed by a sloped or recessed portion of a bottom wall of the tub 14. The pump assembly 31 may include both a drain pump assembly 32 and a recirculation pump assembly 33. The drain pump assembly 32 may draw liquid from the sump 30 and pump the liquid out of the dishwasher 10 to a household drain line (not shown). The recirculation pump assembly 33 may be fluidly coupled between the treating chamber 16 and the spray system to define a circulation circuit for circulating the sprayed liquid. More specifically, the recirculation pump assembly 33 may draw liquid from the sump 30 and the liquid may be simultaneously or selectively pumped through a supply tube 42 to each of the assemblies 34, 36, 38, 40 for selective spraying. While not shown, a liquid supply system may include a water supply conduit coupled with a household water supply for supplying water to the treating chamber 16.


A heating system including a heater 46 may be located within the sump 30 for heating the liquid contained in the sump 30.


A controller 50 may also be included in the dishwasher 10, which may be operably coupled with various components of the dishwasher 10 to implement a cycle of operation. The controller 50 may be located within the door 18 as illustrated, or it may alternatively be located somewhere within the chassis 12. The controller 50 may also be operably coupled with a control panel or user interface 56 for receiving user-selected inputs and communicating information to the user. The user interface 56 may include operational controls such as dials, lights, switches, and displays enabling a user to input commands, such as a cycle of operation, to the controller 50 and receive information.


As illustrated schematically in FIG. 2, the controller 50 may be coupled with the heater 46 for heating the wash liquid during a cycle of operation, the drain pump assembly 32 for draining liquid from the treating chamber 16, and the recirculation pump assembly 33 for recirculating the wash liquid during the cycle of operation. The controller 50 may be provided with a memory 52 and a central processing unit (CPU) 54. The memory 52 may be used for storing control software that may be executed by the CPU 54 in completing a cycle of operation using the dishwasher 10 and any additional software. For example, the memory 52 may store one or more pre-programmed cycles of operation that may be selected by a user and completed by the dishwasher 10. The controller 50 may also receive input from one or more sensors 58. Non-limiting examples of sensors that may be communicably coupled with the controller 50 include a temperature sensor and turbidity sensor to determine the soil load associated with a selected grouping of dishes, such as the dishes associated with a particular area of the treating chamber.


Referring now to FIG. 3, the recirculation pump assembly 33 is shown removed from the dishwasher 10. The recirculation pump assembly 33 includes a recirculation pump 60 that is secured to a housing 62, which is shown partially cutaway for clarity. The housing 62 defines a filter chamber 64 that extends the length of the housing 62 and includes an inlet port 66, a drain outlet port 68, and a recirculation outlet port 70. The inlet port 66 is configured to be coupled to a fluid hose (not shown) extending from the sump 30. The filter chamber 64, depending on the location of the recirculation pump assembly 33, may functionally be part of the sump 30 or replace the sump 30. The drain outlet port 68 for the recirculation pump 60, which may also be considered the drain pump inlet port, may be coupled to the drain pump assembly 32 such that actuation of the drain pump assembly 32 drains the liquid and any foreign objects within the filter chamber 64. The recirculation outlet port 70 is configured to receive a fluid hose (not shown) such that the recirculation outlet port 70 may be fluidly coupled to the liquid spraying system including the assemblies 34, 36, 38, 40. The recirculation outlet port 70 is fluidly coupled to an impeller chamber 72 of the recirculation pump 60 such that when the recirculation pump 60 is operated liquid may be supplied to each of the assemblies 34, 36, 38, 40 for selective spraying. In this manner, the recirculation pump 60 includes an inlet fluidly coupled to the tub 14 and an outlet fluidly coupled to the liquid spraying system to recirculate liquid from the tub 14 to the treating chamber 16.


A liquid filtering system may be included within the recirculation pump assembly 33 and is illustrated as including a rotating filter 74, a shroud 76, and a first diverter 78. FIG. 4 more clearly illustrates that the recirculation pump assembly 33 may also include a diverter mount 80, a biasing element 82, a second diverter 84, a first bearing 86, a second bearing 88, a shaft 90, a separator ring 92, a floating ring 94, and a clip 96.



FIG. 4 also more clearly illustrates that the recirculation pump assembly 33 may also include a recirculation pump 60 having a motor 61 and an impeller 63, which may be rotatably driven by the motor 61. The pump 60 includes an inlet 100 and an outlet 102, both which are in fluid communication with the circulation circuit. The inlet 100 of the pump 60 may have an area of 660 to 810 mm2 and the outlet 102 of the pump 60 may have an area of 450 to 500 mm2. The recirculation pump 60 may also have an exemplary volumetric flow rate and the rate may be in the range of 15 liters per minute to 32 liters per minute. The motor 61 may be a variable speed motor having speeds ranging from between 2000 and 3500 rpm. Alternatively, the motor 61 may include a single speed motor having any suitable speed; for example, the motor 61 may have a speed of 3370 rpm+/−50 rpm. The general details of such a recirculation pump assembly 33 are described in the commonly-owned patent application entitled, Rotating Filter for a Dishwashing Machine, filed Jun. 20, 2011, and assigned U.S. application Ser. No. 13/163,945, now U.S. Pat. No. 8,627,832 which is incorporated by reference herein. The rotating filter 74 may be operably coupled to the impeller 63 such that rotation of the impeller 63 effects the rotation of the rotating filter 74.


The rotating filter 74 may include a hollow body formed by a frame 104 and a screen 106 and may have an exterior and an interior. The hollow body of the rotating filter 74 may be any suitable shape including that of a cone or a cylinder. The frame 104 is illustrated as including a first ring 108, a second ring 110, and an end portion 112. The screen 106 is supported by the frame 104 and the position of the screen 106 may be fixed relative to the frame 104. In the illustrated embodiment, the screen 106 is held between the first and second rings 108 and 110 of the frame 104. The first ring 108 extends beyond the screen 106 of the rotating filter 74 and includes a projection extending about a periphery of the hollow body of the screen 106.


The screen 106 may include a plurality of openings through which liquid may pass. The plurality of openings may have a variety of sizes and spacing. The sum of the individual areas of the plurality of openings within the screen 106 may define a cumulative open area for the body of the screen 106. The area of the body of the screen 106 exposed to the circulation circuit may define the body area of the screen 106. It is contemplated that the ratio of the open area to the body area of the screen 106 may be in the range of 0.15 to 0.40. The ratio may be a function of at least the area of one of the inlet 100 of the pump 60 and the outlet 102 of the pump 60. The pump 60 may also have a volumetric flow rate and the ratio of the open area to the body area of the screen 106 may be a function of the volumetric flow rate. The ratio of the open area to the body area of the screen 106 may also be a function of the rotational speed of the rotating filter 74 during operation. For example, the ratio being within the range of 0.15 to 0.40 may correlate to a rotational speed of the rotating filter 74 being between 2000 and 3500 rpm. In one embodiment the rotating filter 74 may include 0.160 mm diameter holes and about eighteen percent open area. Reducing the open area to twelve percent may reduce the motor wattage without lowering the pump pressure and the resulting rotating filter 74 may handle soils equally as well.


The shroud 76 may define an interior and may be sized to at least partially enclose the rotating filter 74. The shroud 76 may be fluidly accessible through multiple access openings 114. It is contemplated that the shroud 76 may include any number of access openings 114 including a singular access opening 114.


The first diverter 78 may be sized to extend along at least a portion of the rotating filter 74. The diverter mount 80 may be operably coupled to the first diverter 78 including that it may be formed as a single piece with the first diverter 78. The diverter mount 80 may include a first mount 116 and a diverter bearing surface 118. The first diverter 78 may extend between the first mount 116 and the diverter bearing surface 118.


As shown in FIG. 5, when assembled, the first bearing 86 may be mounted in an end of the rotating filter 74 and may rotatably receive the stationary shaft 90, which in turn may be mounted to an end of the shroud 76 through a retainer, such as the spring clip 96. The clip 96 may retain the shroud 76 on the stationary shaft 90 such that it does not slide or rotate. The first mount 116 of the diverter mount 80 may also be supported by the shaft 90 between the bearing 86 and the biasing element 82 and is configured to extend along a portion of the screen 106. The first diverter 78 and the diverter mount 80 are arranged such that the first diverter 78 may be located within the access opening 114 of the shroud 76. In the illustrated embodiment, the first diverter 78 projects through the access opening 114.


The second bearing 88 may be adjacent an inside portion of the rotating filter 74 and may rotatably receive the stationary shaft 90. The second bearing 88 may also separate the rotating filter 74 from the second diverter 84, which may also be mounted on the stationary shaft 90. In this way, the rotating filter 74 may be rotatably mounted to the stationary shaft 90 with the first bearing 86 and the second bearing 88 and the shroud 76, first diverter 78, and second diverter 84 may be stationary with the shaft 90.


The shroud 76 may be mounted at its other end to the separator ring 92. The separator ring 92 acts to separate the filtered water in the impeller chamber 72 from the mixture of liquid and soils in the filter chamber 64. The separator ring 92 may be located between the floating ring 94 and the recirculation pump 60 and may be axially moveable to aid in radially and vertically sealing with the separator ring 92.


The screen 106 may have a first surface 120 defining an upstream surface and a second surface 122 defining a downstream surface. The rotating filter 74 may be located within the circulation circuit such that the circulated liquid passes through the rotating filter 74 from the upstream surface defined by the first surface 120 to a downstream surface defined by the second surface 122. In this manner, recirculating liquid passes through the rotating filter 74 from the upstream surface to the downstream surface to effect a filtering of the liquid. In the described flow direction, the upstream surface correlates to the outer of first surface 120 of the rotating filter 74 and the downstream surface correlates to the inner or second surface 122 of the rotating filter 74 such that the rotating filter 74 separates the upstream portion of the filter chamber 64 from the outlet port 70. If the flow direction is reversed, the downstream surface may correlate with the outer of first surface 120 and the upstream surface may correlate with the inner or second surface 122.


The first diverter 78 may extend along and be spaced away from at least a portion of the upstream surface to define a gap 128 between the first diverter 78 and the rotating filter 74 with a first portion of the first diverter 78 being proximate the impeller 63 and the second portion of the first diverter 78 being distal the impeller 63. A filter bearing surface 124 is provided on the frame 104, which, as illustrated is an integral part of the frame 104, though it need not be. At least part of the frame 104 may form a filter bearing surface 124. In the illustrated example, the filter bearing surface 124 includes the first ring 108. More specifically, a portion of the first ring 108 projecting beyond the screen 106 forms the filter bearing surface 124. When assembled, the diverter bearing surface 118 and the filter bearing surface 124 are in an abutting relationship to define a floating relative relationship between the first diverter 78 and the rotating filter 74. The rotating filter 74 and first diverter 78 are arranged such that when the filter bearing surface 124 and diverter bearing surface 118 are in contact, the first diverter 78 is spaced from the screen 106 to form the gap 128 between the first diverter 78 and the screen 106. The gap 128 may be in a range of 0.25 mm to 1 mm and is preferably around 0.5 mm. In the illustrated embodiment, the internal or second diverter 84 may be proximate the downstream surface to define a second gap 130. The gap 130 may be in a range of 0.5 mm to 2 mm and is preferably around 0.75 mm. Thus, the first diverter 78 may be proximate the exterior of the rotating filter 74 and the second diverter 84 may be proximate the interior of the rotating filter 74.


In the illustrated embodiment, the hollow body of the rotating filter 74 is cone shaped and the first diverter 78 is positioned such that the gap 128 is substantially constant relative to the rotating filter 74. The diverter mount 80 may operably couple the first diverter 78 to the rotating filter 74 such that there is only one tolerance stack up between at least a portion of the first diverter 78 and a portion of the rotating filter 74. More specifically, the diverter bearing surface 118 and the filter bearing surface 124 are in contact during rotation of the rotating filter 74 to form the one tolerance stack up.


The biasing element 82 may bias the first diverter 78 into position relative to the rotating filter 74 to form the gap 128. The biasing element 82 may bias the first diverter 78 and the rotating filter 74 into a fixed relative axial position, which may be of particular importance when the rotating filter 74 is a cone with a varying diameter and of less importance if the rotating filter 74 and first diverter 78 are of constant diameter, such as a cylinder. More specifically the biasing element 82 may bias the second portion of the first diverter 78 toward an end of the rotating filter 74 proximate the first ring 108 to maintain the first diverter 78 and the rotating filter 74 in the fixed relative position. In the illustrated example, the biasing element biases both of the first diverter and the rotating filter 74 toward the impeller 63. The biasing element 82 may be any suitable biasing element 82 including a compression spring. The biasing element 82 may also bias the rotating filter 74 and the first diverter 78 such that the filter bearing surface 124 and the diverter bearing surface 118 contact each other to form the one tolerance stack up. In the event that the assembly does not include the diverter mount, the biasing element 82 and the first diverter 78 may be configured such that the biasing element 82 may bias the first diverter 78, itself, toward a first end of the rotating filter 74 to maintain the first diverter 78 and rotating filter 74 in a fixed relative position.


In operation, wash liquid, such as water and/or treating chemistry (i.e., water and/or detergents, enzymes, surfactants, and other cleaning or conditioning chemistry), enters the tub 14 and flows into the sump 30 to the inlet port 66 where the liquid may enter the filter chamber 64. As the filter chamber 64 fills, liquid passes through the perforations in the rotating filter 74. After the filter chamber 64 is completely filled and the sump 30 is partially filled with liquid, the dishwasher 10 activates the motor 61. During an operation cycle, a mixture of liquid and foreign objects such as soil particles may advance from the sump 30 into the filter chamber 64 to fill the filter chamber 64.


Activation of the motor 61 causes the impeller 63 and the rotating filter 74 to rotate. The liquid in the recirculation flow path flows into the filter chamber 64 from the inlet port 66. The rotation of the filter 74 causes the liquid and soils therein to rotate in the same direction within the filter chamber 64. The recirculation flow path may circumscribe at least a portion of the shroud 76 and enters through access openings 114 therein. The rotation of the impeller 63 draws liquid from the filter chamber 64 and forces the liquid by rotation of the impeller 63 outward such that it is advanced out of the impeller chamber 72 through the recirculation outlet port 70 to the assemblies 34, 36, 38, 40 for selective spraying. When liquid is delivered to the assemblies 34, 36, 38, 40, it is expelled from the assemblies 34, 36, 38, 40 onto any dishes positioned in the treating chamber 16. Liquid removes soil particles located on the dishes, and the mixture of liquid and soil particles falls onto the bottom wall of the tub 14. The sloped configuration of the bottom wall of the tub 14 directs that mixture into the sump 30. The recirculation pump 60 is fluidly coupled downstream of the downstream surface of the rotating filter 74 and if the recirculation pump 60 is shut off then any liquid and soils within the filter chamber will settle in the filter chamber 64 where the liquid and any soils may be subsequently drained by the drain pump assembly 32.



FIG. 6 illustrates more clearly the shroud 76, first diverter 78, the second diverter 84, and the flow of the liquid along the recirculation flow path. Multiple arrows 144 illustrate the travel of liquid along the recirculation flow path as it passes through the rotating filter 74 from the upstream surface defined by the first surface 120 to a downstream surface defined by the second surface 122. The rotation of the filter 74, which is illustrated in the clockwise direction, causes the liquid and soils therein to rotate in the same direction within the filter chamber 64. The recirculation flow path is thus illustrated as circumscribing at least a portion of the shroud 76 and as entering through the access openings 114. In this manner, the multiple access openings 114 may be thought of as facing downstream to the recirculation flow path. It is possible that some of the liquid in the recirculation flow path may make one or more complete trips around the shroud 76 prior to entering the access openings 114. The number of trips is somewhat dependent upon the suction provided by the recirculation pump 60 and the rotation of the filter 74. As may be seen, a small portion of the liquid may be drawn around the shroud 76 and into the access opening 114 in a direction opposite that of the rotation of the filter 74. The shape of the shroud 76, the first diverter 78, and the second diverter 84 as well as the suction from the recirculation pump 60 may result in a portion of the liquid turning in this manner, which helps discourage foreign objects from entering the access opening 114 as they are less able to make the same turn around the shroud 76 and into the access opening 114.


Several of the zones created in the filter chamber 64 during operation have also been illustrated and include: a first shear force zone 146 and a second shear force zone 148. These zones impact the travel of the liquid along the liquid recirculation flow path as described in detail in the U.S. patent application Ser. No. 13/163,945, filed on Jun. 20, 2011, entitled “Rotating Filter for a Dishwasher,” which is incorporated by reference herein in its entirety. It will be understood that the shroud 76 and the first diverter 78 form artificial boundaries spaced from the upstream surface defined by the first surface 120 of the rotating filter 74 such that liquid passing between the shroud 76 and the first diverter 78 and the upstream surface applies a greater shear force on the first surface 120 than liquid in an absence of the shroud 76 and the first diverter 78 and that in this manner the first shear force zone 146 is formed. Similarly, the second diverter 84 forms a second artificial boundary spaced from the downstream surface defined by the second surface 122 of the rotating filter 74 and creates the second shear force zone 148. The first and second shear force zones 146 and 148 aid in removing foreign soil from the rotating filter 74. Additional zones may be formed by the shroud 76, the first diverter 78, and the second diverter 84 as described in detail in the U.S. patent application Ser. No. 13/163,945, now U.S. Pat. No. 8,627,832. It is contemplated that the relative orientation between the first diverter 78 and the second diverter 84 may be changed to create variations in the zones formed.


In another embodiment, at least a first portion of the first diverter 78 may be in a floating relative relationship with the rotating filter 74. In such an embodiment the first diverter 78 may still include the first diverter bearing surface 118 and the rotating filter 74 may still include a filter bearing surface 124, with the first diverter bearing surface 118 and the filter bearing surface 124 being in an abutting relationship to define the floating relative relationship. In yet another embodiment, a biasing device may be utilized to bias the first diverter 78 into position relative to the rotating filter 74 to form the gap 128. For example, a biasing device in the form of a spring may be used to space the first diverter 78 from the rotating filter 74. The biasing device may also allow the first diverter 78 to be moveable relative to at least a portion of the rotating filter 74 to allow the size of the gap 128 to vary with a position of the first diverter 78 relative to the surface of the rotating filter 74. Such embodiments would operate similarly to the embodiment described above and may reduce damage to the rotating filter 74 caused by soil particles between the first diverter 78 and the rotating filter 74.


The embodiments described above provide for a variety of benefits including enhanced filtration such that soil is filtered from the liquid and not re-deposited on dishes and allow for cleaning of the rotating filter throughout the life of the dishwasher and this maximizes the performance of the dishwasher. Thus, such embodiments require less user maintenance than required by typical dishwashers.


While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims. For example, the rotating filter may have first and second filter elements, which may be affixed to each other or may be spaced apart from each other by a gap. The filter elements may be structurally different from each other, may be made of different materials, and may have different properties attributable to them. For example, the first filter element may be more resistant to foreign object damage than the second filter element. It is also contemplated that the rotating filter may also include a non-perforated portion. The non-perforated portion may encircle the rotating filter and may act as a strengthening rib. The non-perforated portion may be for any given surface area and may provide the rotating filter with greater strength, especially hoop strength. It is also contemplated that the plurality of openings of the screen may be arranged to leave non-perforated bands encircling the screen with the non-perforated bands functioning as strengthening ribs. Further, it will be understood that any portion of the described embodiments above may be combined with each other in any manner.

Claims
  • 1. A dishwasher for treating dishes according to at least one automatic cycle of operation, comprising: a tub at least partially defining a treating chamber for receiving dishes for treatment;a sprayer proximate to the tub to spray liquid into the treating chamber;a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer;a rotating filter located within the circulation circuit such that the circulated liquid passes through the filter from an upstream surface to a downstream surface;a diverter extending along and spaced away from at least a portion of at least one of the upstream and downstream surfaces to define a gap between the diverter and a longitudinal length of the filter; anda diverter mount operably coupling the diverter to an exterior of the filter such that there is only a one tolerance stack up between at least one portion of the diverter and one portion of the filter that effects the gap;wherein the diverter mount comprises a diverter bearing surface on the diverter and a filter bearing surface on the filter, with the diverter bearing surface and the filter bearing surface being in contact during rotation of the filter to form the one tolerance stack up.
  • 2. The dishwasher of claim 1 wherein the filter comprises a frame, with at least a part of the frame forming the filter bearing surface.
  • 3. The dishwasher of claim 2 wherein the filter comprises a screen, which is supported by the frame, with the screen having a first surface defining the upstream surface and a second surface defining the downstream surface.
  • 4. The dishwasher of claim 3 wherein the position of the screen is fixed relative to the frame.
  • 5. The dishwasher of claim 4 wherein the screen defines a hollow body having an exterior, defined by one of the first and second surfaces, and an interior, defined by the other of the first and second surfaces.
  • 6. The dishwasher of claim 5 wherein the filter further comprises a stationary shaft.
  • 7. The dishwasher of claim 6 wherein the diverter mount has a first mount supported by the shaft.
  • 8. A dishwasher for treating dishes according to at least one automatic cycle of operation, comprising: a tub at least partially defining a treating chamber for receiving the dishes for treatment;a sprayer proximate to the tub to spray liquid into the treating chamber;a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer;a rotating filter comprising a frame supporting a screen, with the frame having at least one filter bearing surface extending beyond the screen, and the filter located within the circulation circuit such that the circulated liquid passes through the screen from an upstream surface to a downstream surface as the filter rotates;a first diverter extending along at least a portion of one of the upstream and downstream surfaces, and having a diverter bearing surface; anda biasing device relatively biasing the rotating filter and the first diverter such that the filter bearing surface and the diverter bearing surface contact;wherein the filter and first diverter are arranged such that when the filter bearing surface and diverter bearing surface are in contact, the first diverter is spaced from the screen along an exterior of the filter to form a gap between the first diverter and the screen such that the gap extends continuously along a longitudinal length of the screen.
  • 9. The dishwasher of claim 8 wherein the filter bearing surface extends beyond the screen.
  • 10. The dishwasher of claim 9 wherein the filter defines a hollow body and the filter bearing surface comprises a projection extending about a periphery of the hollow body.
  • 11. The dishwasher of claim 10 wherein the frame comprises at least one ring, with a portion of the ring projecting beyond the screen to form the projection.
  • 12. The dishwasher of claim 8, further comprising a shroud at least partially enclosing the filter and having an access opening, with the first diverter located within the access opening.
  • 13. The dishwasher of claim 12 wherein the first diverter projects through the access opening.
  • 14. A dishwasher for treating dishes according to at least one automatic cycle of operation, comprising: a tub at least partially defining a treating chamber for receiving the dishes for treatment;a sprayer proximate to the tub to spray liquid into the treating chamber;a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer;a rotating filter comprising at least one filter bearing surface and a body in which are provided a plurality of openings, and the filter located within the circulation circuit such that the circulated liquid passes through the plurality of openings from an upstream surface to a downstream surface as the filter rotates; anda first diverter extending along an exterior of the filter and the first diverter having a diverter bearing surface;wherein a gap formed between the first diverter and the filter extends along a longitudinal length of the body of the filter, and wherein the first diverter bearing surface is in contact with the filter bearing surface, andwherein the sum of the individual areas of the plurality of openings defines a cumulative open area for the body, the area of the body exposed to the circulation circuit defines the body area, and the ratio of the open area to the body area is 0.15 to 0.25.
  • 15. The dishwasher of claim 14 wherein the ratio is a function of the rotational speed of the filter.
  • 16. The dishwasher of claim 15 wherein the rotational speed of the filter is between 2000 and 3500 rpm.
  • 17. The dishwasher of claim 15 wherein the pump comprises an inlet in fluid communication with the circulation circuit and an outlet in fluid communication with the circulation circuit, and the ratio is a function of at least the area of one of the inlet and the outlet.
  • 18. The dishwasher of claim 17 wherein the inlet has an area of 660 to 810 mm2 and the outlet has an area of 450 to 500 mm2.
  • 19. The dishwasher of claim 18 wherein the pump comprises a volumetric flow rate and the ratio is a function of the volumetric flow rate.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application represents a divisional of and claims priority to U.S. patent application Ser. No. 13/483,254 entitled “ROTATING FILTER FOR A DISHWASHER” filed May 30, 2012, now U.S. Pat. No. 9,237,836.

US Referenced Citations (191)
Number Name Date Kind
1617021 Mitchell Feb 1927 A
2044524 Charles Jun 1936 A
2154559 Bilde Apr 1939 A
2422022 Koertge Jun 1947 A
2726666 Oxford Dec 1955 A
2734122 Flannery Feb 1956 A
3016147 Cobb et al. Jan 1962 A
3026628 Berger, Sr. et al. Mar 1962 A
3064664 Warhus Nov 1962 A
3068877 Jacobs Dec 1962 A
3103227 Long Sep 1963 A
3122148 Alabaster Feb 1964 A
3186417 Fay Jun 1965 A
3288154 Jacobs Nov 1966 A
3310243 Duncan et al. Mar 1967 A
3378933 Jenkins Apr 1968 A
3542594 Smith et al. Nov 1970 A
3575185 Barbulesco Apr 1971 A
3586011 Lamberto Jun 1971 A
3708120 Camprubi et al. Jan 1973 A
3709236 Field et al. Jan 1973 A
3739145 Woehler Jun 1973 A
3801280 Shah et al. Apr 1974 A
3846321 Strange Nov 1974 A
3906967 Bergeson Sep 1975 A
3989054 Mercer Nov 1976 A
4179307 Cau et al. Dec 1979 A
4180095 Woolley et al. Dec 1979 A
4228962 Dingler et al. Oct 1980 A
4326552 Bleckmann Apr 1982 A
4346723 Geiger Aug 1982 A
4359250 Jenkins Nov 1982 A
4374443 Mosell Feb 1983 A
4528097 Ward Jul 1985 A
4754770 Fornasari Jul 1988 A
5002890 Morrison Mar 1991 A
5030357 Lowe Jul 1991 A
5131419 Roberts Jul 1992 A
5133863 Zander Jul 1992 A
5331986 Lim et al. Jul 1994 A
5427129 Young et al. Jun 1995 A
5454298 Lu Oct 1995 A
5470142 Sargeant et al. Nov 1995 A
5470472 Baird et al. Nov 1995 A
5546968 Jeon et al. Aug 1996 A
5557704 Dennis et al. Sep 1996 A
5569383 Vander Ark, Jr. et al. Oct 1996 A
5601100 Kawakami et al. Feb 1997 A
5618424 Nagaoka Apr 1997 A
5630437 Dries et al. May 1997 A
5655556 Guerrera et al. Aug 1997 A
5673714 Campagnolo et al. Oct 1997 A
5711325 Kloss et al. Jan 1998 A
5755244 Sargeant et al. May 1998 A
5782112 White et al. Jul 1998 A
5803100 Thies Sep 1998 A
5865997 Isaacs Feb 1999 A
5868937 Back et al. Feb 1999 A
5904163 Inoue et al. May 1999 A
5924432 Thies et al. Jul 1999 A
6053185 Beevers Apr 2000 A
6289908 Kelsey Sep 2001 B1
6389908 Chevalier et al. May 2002 B1
6443091 Matte Sep 2002 B1
6460555 Tuller et al. Oct 2002 B1
6491049 Tuller et al. Dec 2002 B1
6601593 Deiss et al. Aug 2003 B2
6666976 Benenson, Jr. et al. Dec 2003 B2
6675437 York Jan 2004 B1
6800197 Kosola et al. Oct 2004 B1
6997195 Durazzani et al. Feb 2006 B2
7047986 Ertle et al. May 2006 B2
7069181 Jerg et al. Jun 2006 B2
7093604 Jung et al. Aug 2006 B2
7150284 Aulbers et al. Dec 2006 B2
7153817 Binder Dec 2006 B2
7198054 Welch Apr 2007 B2
7208080 Batten et al. Apr 2007 B2
7232494 Rappette Jun 2007 B2
7250174 Lee et al. Jul 2007 B2
7270132 Inui et al. Sep 2007 B2
7319841 Bateman, III et al. Jan 2008 B2
7326338 Batten et al. Feb 2008 B2
7331356 VanderRoest et al. Feb 2008 B2
7347212 Rosenbauer Mar 2008 B2
7350527 Gurubatham et al. Apr 2008 B2
7363093 King et al. Apr 2008 B2
7406843 Thies et al. Aug 2008 B2
7409962 Welch Aug 2008 B2
7445013 VanderRoest et al. Nov 2008 B2
7475696 VanderRoest et al. Jan 2009 B2
7497222 Edwards et al. Mar 2009 B2
7523758 VanderRoest et al. Apr 2009 B2
7594513 VanderRoest et al. Sep 2009 B2
7810512 Pyo et al. Oct 2010 B2
7819983 Kim et al. Oct 2010 B2
7896977 Gillum et al. Mar 2011 B2
8038802 Tuller Oct 2011 B1
8043437 Delgado et al. Oct 2011 B1
8137479 VanderRoest et al. Mar 2012 B2
8161986 Alessandrelli Apr 2012 B2
8187390 VanderRoest et al. May 2012 B2
8215322 Fountain et al. Jul 2012 B2
8627832 Fountain et al. Jan 2014 B2
8667974 Fountain et al. Mar 2014 B2
8746261 Welch Jun 2014 B2
9005369 Delgado et al. Apr 2015 B2
9010344 Tuller et al. Apr 2015 B2
9034112 Tuller et al. May 2015 B2
9538898 Tuller et al. Jan 2017 B2
20020017483 Chesner et al. Feb 2002 A1
20030037809 Favaro Feb 2003 A1
20030168087 Inui et al. Sep 2003 A1
20030205248 Christman et al. Nov 2003 A1
20040007253 Jung et al. Jan 2004 A1
20040103926 Ha Jun 2004 A1
20040254654 Donnelly et al. Dec 2004 A1
20050022849 Park et al. Feb 2005 A1
20050133070 Vanderroest et al. Jun 2005 A1
20060005863 Gurubatham et al. Jan 2006 A1
20060042657 Welch Mar 2006 A1
20060054549 Schoendorfer Mar 2006 A1
20060123563 Raney et al. Jun 2006 A1
20060162744 Walkden Jul 2006 A1
20060174915 Hedstrom et al. Aug 2006 A1
20060236556 Ferguson et al. Oct 2006 A1
20060237049 Weaver et al. Oct 2006 A1
20060237052 Picardat et al. Oct 2006 A1
20070006898 Lee Jan 2007 A1
20070107753 Jerg May 2007 A1
20070119478 King et al. May 2007 A1
20070124004 King et al. May 2007 A1
20070163626 Klein Jul 2007 A1
20070186964 Mason et al. Aug 2007 A1
20070246078 Purtilo et al. Oct 2007 A1
20070266587 Bringewatt et al. Nov 2007 A1
20070295360 Jerg et al. Dec 2007 A1
20080116135 Rieger et al. May 2008 A1
20080190464 Stahlmann et al. Aug 2008 A1
20080289654 Kim et al. Nov 2008 A1
20080289664 Rockwell et al. Nov 2008 A1
20090095330 Iwanaga et al. Apr 2009 A1
20090101182 Buesing et al. Apr 2009 A1
20090283111 Classen et al. Nov 2009 A1
20100012159 Verma et al. Jan 2010 A1
20100043826 Bertsch et al. Feb 2010 A1
20100043828 Choi et al. Feb 2010 A1
20100043847 Yoon et al. Feb 2010 A1
20100121497 Heisele et al. May 2010 A1
20100147339 Bertsch et al. Jun 2010 A1
20100154830 Lau et al. Jun 2010 A1
20100154841 Fountain et al. Jun 2010 A1
20100175762 Anacrelico Jul 2010 A1
20100224223 Kehl et al. Sep 2010 A1
20100252081 Classen et al. Oct 2010 A1
20100300499 Han et al. Dec 2010 A1
20110030742 Dalsing et al. Feb 2011 A1
20110061682 Fountain et al. Mar 2011 A1
20110120508 Yoon et al. May 2011 A1
20110126865 Yoon et al. Jun 2011 A1
20110146714 Fountain et al. Jun 2011 A1
20110146730 Welch Jun 2011 A1
20110146731 Fountain et al. Jun 2011 A1
20110197933 Yoon et al. Aug 2011 A1
20110214702 Brown-West et al. Sep 2011 A1
20110240070 Fadler et al. Oct 2011 A1
20120097200 Fountain Apr 2012 A1
20120118330 Tuller et al. May 2012 A1
20120118336 Welch May 2012 A1
20120138096 Tuller et al. Jun 2012 A1
20120138106 Fountain et al. Jun 2012 A1
20120138107 Fountain et al. Jun 2012 A1
20120167928 Fountain et al. Jul 2012 A1
20120291805 Tuller et al. Nov 2012 A1
20120291822 Tuller et al. Nov 2012 A1
20120318295 Delgado et al. Dec 2012 A1
20120318296 Fountain et al. Dec 2012 A1
20120318308 Fountain et al. Dec 2012 A1
20120318309 Tuller et al. Dec 2012 A1
20130186437 Tuller et al. Jul 2013 A1
20130186438 Fountain et al. Jul 2013 A1
20130220386 Jozwiak Aug 2013 A1
20130319481 Welch Dec 2013 A1
20130319482 Vallejo Noriega et al. Dec 2013 A1
20130319483 Welch Dec 2013 A1
20130319485 Blanchard et al. Dec 2013 A1
20140109938 Geda et al. Apr 2014 A1
20140130829 Fountain et al. May 2014 A1
20140230852 Tuller et al. Aug 2014 A1
20140238446 Welch Aug 2014 A1
20140332040 Geda Nov 2014 A1
Foreign Referenced Citations (160)
Number Date Country
169630 Jun 1934 CH
2571812 Sep 2003 CN
2761660 Mar 2006 CN
1966129 May 2007 CN
2907830 Jun 2007 CN
101406379 Apr 2009 CN
201276653 Jul 2009 CN
201361486 Dec 2009 CN
101654855 Feb 2010 CN
201410325 Feb 2010 CN
201473770 May 2010 CN
1134489 Aug 1961 DE
1428358 Nov 1968 DE
1453070 Mar 1969 DE
7105474 Aug 1971 DE
7237309 Sep 1973 DE
2825242 Jan 1979 DE
3337369 Apr 1985 DE
3723721 May 1988 DE
3842997 Jul 1990 DE
4011834 Oct 1991 DE
4016915 Nov 1991 DE
4131914 Apr 1993 DE
4236931 May 1993 DE
9415486 Nov 1994 DE
9416710 Jan 1995 DE
4413432 Aug 1995 DE
4418523 Nov 1995 DE
4433842 Mar 1996 DE
69111365 Mar 1996 DE
19546965 Jun 1997 DE
69403957 Jan 1998 DE
19652235 Jun 1998 DE
10000772 Jul 2000 DE
69605965 Aug 2000 DE
19951838 May 2001 DE
10065571 Jul 2002 DE
10106514 Aug 2002 DE
60206490 May 2006 DE
60302143 Aug 2006 DE
102005023428 Nov 2006 DE
102005038433 Feb 2007 DE
102007007133 Aug 2008 DE
102007060195 Jun 2009 DE
202010006739 Aug 2010 DE
102009027910 Jan 2011 DE
102009028278 Feb 2011 DE
102010061215 Jun 2011 DE
102011052846 May 2012 DE
102010061346 Jun 2012 DE
102012103435 Dec 2012 DE
0068974 Jan 1983 EP
0178202 Apr 1986 EP
0198496 Oct 1986 EP
0208900 Jan 1987 EP
0370552 May 1990 EP
0374616 Jun 1990 EP
0383028 Aug 1990 EP
0405627 Jan 1991 EP
437189 Jul 1991 EP
0454640 Oct 1991 EP
0521815 Jan 1993 EP
0524102 Jan 1993 EP
0585905 Sep 1993 EP
0702928 Aug 1995 EP
0597907 Dec 1995 EP
0725182 Aug 1996 EP
0748607 Dec 1996 EP
752231 Jan 1997 EP
0752231 Jan 1997 EP
0854311 Jul 1998 EP
0855165 Jul 1998 EP
0898928 Mar 1999 EP
0943281 Sep 1999 EP
1029965 Aug 2000 EP
1224902 Jul 2002 EP
1256308 Nov 2002 EP
1264570 Dec 2002 EP
1277430 Jan 2003 EP
1319360 Jun 2003 EP
1342827 Sep 2003 EP
1346680 Sep 2003 EP
1386575 Feb 2004 EP
1415587 May 2004 EP
1498065 Jan 2005 EP
1583455 Oct 2005 EP
1703834 Sep 2006 EP
1728913 Dec 2006 EP
1743871 Jan 2007 EP
1862104 Dec 2007 EP
1882436 Jan 2008 EP
1980193 Oct 2008 EP
2127587 Feb 2009 EP
2075366 Jul 2009 EP
2138087 Dec 2009 EP
2332457 Jun 2011 EP
2335547 Jun 2011 EP
2338400 Jun 2011 EP
2351507 Aug 2011 EP
1370521 Aug 1964 FR
2372363 Jun 1978 FR
2491320 Apr 1982 FR
2491321 Apr 1982 FR
2790013 Aug 2000 FR
973859 Oct 1964 GB
1047948 Nov 1966 GB
1123789 Aug 1968 GB
1515095 Jun 1978 GB
2274772 Aug 1994 GB
55039215 Mar 1980 JP
60069375 Apr 1985 JP
61085991 May 1986 JP
61200824 Sep 1986 JP
1005521 Jan 1989 JP
1080331 Mar 1989 JP
5245094 Sep 1993 JP
07178030 Jul 1995 JP
9164107 Jun 1997 JP
10109007 Apr 1998 JP
10243910 Sep 1998 JP
11076127 Mar 1999 JP
2000107114 Apr 2000 JP
2001190479 Jul 2001 JP
2001190480 Jul 2001 JP
2003336909 Dec 2003 JP
2003339607 Dec 2003 JP
2004113683 Apr 2004 JP
2004267507 Sep 2004 JP
2005124979 May 2005 JP
2006075635 Mar 2006 JP
2007068601 Mar 2007 JP
2008093196 Apr 2008 JP
2008253543 Oct 2008 JP
2008264018 Nov 2008 JP
2008264724 Nov 2008 JP
2010035745 Feb 2010 JP
2010187796 Sep 2010 JP
5184514 Apr 2013 JP
20010077128 Aug 2001 KR
20060029567 Apr 2006 KR
20090006659 Jan 2009 KR
20090061479 Jun 2009 KR
20100037453 Apr 2010 KR
2005058124 Jun 2005 WO
2005060813 Jul 2005 WO
2005115216 Dec 2005 WO
2007024491 Mar 2007 WO
2007074024 Jul 2007 WO
2008067898 Jun 2008 WO
2008125482 Oct 2008 WO
2009018903 Feb 2009 WO
2009065696 May 2009 WO
2009077266 Jun 2009 WO
2009077279 Jun 2009 WO
2009077280 Jun 2009 WO
2009077283 Jun 2009 WO
2009077286 Jun 2009 WO
2009077290 Jun 2009 WO
2009118308 Oct 2009 WO
2010073185 Jul 2010 WO
Non-Patent Literature Citations (16)
Entry
German Search Report for DE102013103625, dated Jul. 19, 2013.
German Search Report for Counterpart DE102013109125, dated Dec. 9, 2013.
German Search Report for DE102010061342, dated Aug. 19, 2011.
European Search Report for EP101952380, dated May 19, 2011.
Ishihara et al., JP 11155792 A, English Machine Translation, 1999, pp. 1-14.
German Search Report for Counterpart DE102014101260.7, dated Sep. 18, 2014.
European Search Report for EP11188106, dated Mar. 29, 2012.
European Search Report for EP12188007, dated Aug. 6, 2013.
German Search Report for DE102010061347, dated Jan. 23, 2013.
German Search Report for DE102010061215, dated Feb. 7, 2013.
German Search Report for DE102010061346, dated Sep. 30, 2011.
German Search Report for DE102010061343, dated Jul. 7, 2011.
German Search Report for DE102011053666, dated Oct. 21, 2011.
German Search Report for DE102013103264, dated Jul. 12, 2013.
European Search Report for EP121914675, dated Dec. 5, 2012.
German Search Report for DE1020141017242, dated Apr. 26, 2016.
Related Publications (1)
Number Date Country
20160100738 A1 Apr 2016 US
Divisions (1)
Number Date Country
Parent 13483254 May 2012 US
Child 14967918 US