The present invention generally relates to a rotating latch assembly for raising and lowering the height of a vehicle.
Devices for adjusting the height of a vehicle body are known. The devices may be provided in the suspension struts of motor vehicles, in particular, for increasing the ground clearance of motor vehicles or lowering the body for flat road surfaces. Typically, such a device includes a lift housing disposed on a center axis defining a chamber. A support tube is disposed in the chamber with the lift housing being movable along the center axis relative to the support tube. The movement of the lift housing is typically conducted using a hydraulic actuator. However, if the lift housing needs to be held in an extended position to increase the height of a vehicle, a constant hydraulic pressure is required. Accordingly, the hydraulic pump needs to work/restart periodically due to unavoidable internal leaks. Solenoid activated mechanisms, e.g. a pneumatic suspension are also available for this type of application. However, the solenoid activated mechanisms require electric power input for the locking/unlocking of the solenoid valve which cumulates with the required hydraulic power.
One such a device is disclosed in U.S. Pat. No. 9,707,819. The device includes a lift housing disposed on a center axis and extending between a first opened end and a second opened end and defining a chamber extending therebetween. A support tube is slidably disposed in the chamber and extending between a first end and a second end. The first end is disposed outside of the chamber and axially spaced from the first opened end. The second end of the support tube is disposed outside of the chamber and axially spaced from the second opened end. The lift housing is movable along the support tube between an extended position and a lowered position in response to a movement provided by an actuator. The extended position is defined as the lift housing being adjacent to the first end for raising the height of the vehicle. The lowered position is defined as the lift housing being adjacent to the second end for lowering the height of the vehicle.
The present invention provides for a rotating latch assembly that efficiently raises and lowers the height of the vehicle thereby improving vehicle energy consumption due to reduced air drag. In addition, the present invention maintains the vehicle being in the raised position without additional energy consumption. Furthermore, the present invention prevents unintentional movements of the rotating latch assembly from the extended position to the lowered position.
It is one aspect of the present invention to provide a rotating latch assembly for raising and lowering a vehicle. The rotating latch assembly includes a lift housing disposed on a center axis and extending between a first opened end and a second opened end and defining a chamber extending therebetween. A support tube is slidably disposed in the chamber and extends between a first end and a second end. The first end is disposed outside of the chamber and axially spaced from the first opened end. The second end of the support tube is disposed outside of the chamber and axially spaced from the second opened end. The lift housing is movable along the support tube between an extended position and a lowered position in response to a movement provided by an actuator. The extended position is defined as the lift housing being adjacent to the first end for raising the height of the vehicle. The lowered position is defined as the lift housing being adjacent to the second end for lowering the height of the vehicle. A retaining member is disposed between the lift housing and the support tube and attached to the support tube and the lift housing for maintaining the lift housing in the extended position as the lift housing moving from the lowered position to the extended position and allowing the lift housing to move from the extended position to the lowered position.
It is another aspect of the present invention to provide a rotating latch assembly for raising and lowering a vehicle. The rotating latch assembly includes a lift housing disposed on a center axis extending between a first opened end and a second opened end and defining a chamber extending therebetween. A support tube is slidably disposed in the chamber and extending between a first end and a second end. The first end is disposed outside of the chamber and axially spaced from the first opened end. The second end of the support tube is disposed outside of the chamber and axially spaced from the second opened end. A projection is disposed in the chamber and extends radially outwardly from the support tube to a distal end for engaging the lift housing. A protrusion is disposed in the chamber and adjacent to the second opened end extending radially inwardly from the lift housing and toward the center axis for engaging the projection to allow the lift housing to move axially along the support tube between an extended position and a lowered position in response to a movement provided by an actuator. The extended position is defined as the lift housing being adjacent to the first end for raising the height of the vehicle. The lowered position is defined as the lift housing being adjacent to the second end for lowering the height of the vehicle. A retaining member is disposed between the lift housing and the support tube and attached to the support tube and the lift housing for maintaining the lift housing in the extended position as the lift housing moving from the lowered position to the extended position and allowing the lift housing to move from the extended position to the lowered position.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a rotating latch assembly 20 constructed in accordance with one embodiment of the present invention is generally shown in
As best shown in
The support tube 30 includes a first portion 36 and a second portion 38. The first portion 36 of the support tube is disposed adjacent to the first end 32 and extends about the center axis A to define a first diameter D1. The second portion 38 of the support tube 30 is spaced from the first portion 36, disposed adjacent to the second end 34, and extends about the center axis A to define a second diameter D2 with the second diameter D2 being greater than the first diameter D1. In other words, the first portion 36 of the support tube 30 is narrower than the second portion 38 of the support tube 30. An intermediate portion 40 extends between the first portion 36 and the second portion 38 to connect the first portion 36 with the second portion 38. The intermediate portion 40 extends radially outwardly from the first portion 36, perpendicular to the center axis A, to the second portion 38 to connect the first portion 36 with the second portion 38 and define a shoulder 42 extending along the intermediate portion 40. The intermediate portion 40 and the lift housing 22 defines a compartment 44 extending between the shoulder 42, the first portion 36 of the support tube 30, and the lift housing 22.
As best illustrated in
A retaining member 52 is disposed in the compartment 44, attached to the support tube 30 and the lift housing 22, for maintaining the lift housing 22 in the extended position as the lift housing 22 is moving from the lowered position to the extended position and allowing the lift housing 22 to move from the extended position to the lowered position. As best shown in
As best shown in
As best shown in solid line of
The outer ring 56 includes a plurality of nubs 96 disposed at the primary end 94 of the outer ring teeth 92 and extending radially inwardly toward the center axis A to engage the pathway 76 and the channel 82 to allow the lift housing 22 to move between the extended position and the lowered position. A stop ring 98, having a generally circular shape, disposed in the compartment 44, adjacent to the bushing 65. A plurality of lips 100, circumferentially spaced from one another, extends radially outwardly from the stop ring 98 and defines a plurality of gap 102 disposed between the adjacent lips 100 for receiving the outer ring teeth and limits the movement of the outer ring teeth 92.
In operation, in response to an axial movement provided by the actuator, the lift housing 22 moves along the center axis A and the support tube 30 from the lowered position. While in the lowered position, the outer ring teeth 92 are received in the slots 70 between the inner ring teeth 66. As the lift housing 22 moves axially along the support tube 30, the nubs 96 of the outer ring 56 slides along the channels 82 to the pathway 76. As the nubs 96 of the outer ring 56 slides along with the pathway 76, the axial movement provided by the hydraulic actuator is converted to a rotational movement thereby rotating the inner ring 54 about the center axis A. By rotating the inner ring 54 the outer ring teeth 92 aligns with the inner ring teeth 66 allowing the primary end 94 of the outer ring teeth 92 to be received in the cavity 72 of the inner ring teeth 66 thereby defining the extended position to increase the height of the vehicle. Based on the engagement between the outer ring teeth 92 and the inner ring teeth 66, the outer ring teeth 92 is rested in the cavity 72 of the inner ring teeth 66 thereby maintaining the lift housing 22 in the extended position without any additional force input provided by the hydraulic actuator. To move from the extended position to the lowered position, the hydraulic actuator provides another axial movement to lift housing 22 causing the inner ring teeth 66 and the outer ring teeth 92 to move axially away from one another. At the same time, the nub 96 of the outer ring teeth 92 slides along the pathway 76 and converts the axial movement provided by the hydraulic actuator to a rotational movement thereby rotating the inner ring 54 about the center axis A. By rotating the inner ring 54, the outer ring teeth 92 aligns with the slots 70 between inner ring teeth 66 allowing the outer ring teeth 92 to be received in the slots 70 between the inner ring teeth 66 thereby defining the lowered position to decrease the height of the vehicle. In other words, to move between the lowered position and the extended position, only a raising force is used to move the lift housing 22 axially along the support tube and the center axis A.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility. The use of the word “said” in the apparatus claims refers to an antecedent that is a positive recitation meant to be included in the coverage of the claims whereas the word “the” precedes a word not meant to be included in the coverage of the claims.
This application claims the benefit of U.S. Provisional Application Patent Ser. No. 62/674,588, filed May 21, 2018, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3618927 | Nicholls | Nov 1971 | A |
3938793 | Kaptanis | Feb 1976 | A |
4458887 | Shimokura | Jul 1984 | A |
7926822 | Ohletz et al. | Apr 2011 | B2 |
8516914 | Osterlanger | Aug 2013 | B2 |
9694643 | Mersmann et al. | Jul 2017 | B2 |
9707819 | Dobre et al. | Jul 2017 | B2 |
20010032462 | Beck | Oct 2001 | A1 |
20170197484 | Mersmann et al. | Jul 2017 | A1 |
20190248203 | Krehmer | Aug 2019 | A1 |
20190359021 | Szymanski | Nov 2019 | A1 |
20200055361 | Krehmer | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2012072784 | Apr 2012 | CN |
105612068 | Jun 2016 | CN |
106799945 | Jun 2017 | CN |
102010017352 | Dec 2011 | DE |
102014206142 | Feb 2015 | DE |
102014215420 | Feb 2015 | DE |
102014225584 | Aug 2015 | DE |
102014203684 | Sep 2015 | DE |
102015224862 | Jun 2017 | DE |
102016212884 | Jan 2018 | DE |
102016213623 | Feb 2018 | DE |
1953013 | Aug 2008 | EP |
1975054775 | May 1975 | JP |
2016530154 | Sep 2016 | JP |
2015021952 | Feb 2015 | WO |
Entry |
---|
Extended European Search Report dated Dec.17, 2019 for counterpart European patent application No. EP19173770.9. |
First Office Action and search report dated Jun. 2, 2020 for counterpart Chinese patent application No. 201910339066.6, along with machine EN translation downloaded from EPO. |
First Office Action issued for corresponding Japanese Patent Application 2019-095044 dated Apr. 21, 2020. |
Number | Date | Country | |
---|---|---|---|
20190351725 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62674588 | May 2018 | US |