The present invention relates to a rotary nozzle die machine for use with a dough extrusion machine and, more particularly, to such a rotary nozzle die machine for use with two or more types of dough for producing twisted or braided products.
It is known to provide a rotary nozzle die machine having rotating nozzles for use with a single dough extrusion machine to manufacture a spirally twisted or braided food product. For example, U.S. Patent No. 6,450,796 (“the '796 patent”), incorporated herein by reference in its entirety, discloses a rotary nozzle die machine having a plurality of such rotating nozzles. The machine disclosed in the '796 patent is adapted to produce a twisted food product (see
Briefly stated, in one embodiment the present invention comprises a rotary drive nozzle die machine for use with at least first and second dough extruders. The machine includes at least one rotatable nozzle having at least two openings for extruding at least two strands of dough therethrough, a first compression head for directing a first flow of a first type of dough under pressure from the first extruder toward the at least one rotatable nozzle and a second compression head for directing a second flow of a second type of dough under pressure from the second extruder toward the at least one rotatable nozzle. A mixing chamber is connected to the first and second compression heads for receiving the first and second flows of dough, for mixing the second dough into the first dough and for directing the mixed dough to the at least one rotatable nozzle and a drive assembly rotates the at least one nozzle whereby the at least two strands of the mixed dough extruded through the at least two openings of the at least one nozzle are spiral wound together to form a single dough stream.
In another embodiment, the present invention comprises a rotary drive nozzle die machine for use with at least first and second dough extruders. The machine includes at least one rotatable nozzle having three openings for extruding three strands of dough therethrough, a first compression head for directing a first flow of a first type of dough under pressure from the first extruder toward the at least one rotatable nozzle and a second compression head for directing a second flow of a second type of dough and a third flow of a third type of dough under pressure from the second extruder toward the at least one rotatable nozzle. A mixing chamber is connected to the first and second compression heads for receiving the first, second and third flows of dough, for mixing the second dough and the third dough into the first dough and for directing the mixed dough to the at least one rotatable nozzle. A drive assembly rotates the at least one rotatable nozzle whereby the three strands of the mixed dough extruded through the three openings of the at least one nozzle are spiral wound together to form a single dough stream.
In yet another embodiment, the present invention comprises a rotary drive nozzle die machine for use with at least first and second dough extruders. The machine includes at least one rotatable nozzle having a central opening and at least one non central opening for extruding at least two strands of dough therethrough, a first compression head for directing a first flow of a first type of dough under pressure from the first extruder to the non central opening of the at least one rotatable nozzle and a second compression head for directing a second flow of a second type of dough under pressure from the second extruder to the central opening of the at least one rotatable nozzle. A drive assembly rotates the at least one nozzle whereby a strand of dough of the second type is extruded through the central nozzle opening and a strand of dough of the first type is extruded through the non central nozzle opening and is spiral wound around the strand of dough of the second type to form a single dough stream.
The following detailed description of preferred embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “lower” and “upper” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the rotating nozzle die machine and designated parts thereof. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. Additionally, the word “a” as used in the specification means “at least one.”
Referring to the drawings in detail, wherein like numerals indicate like elements throughout, there are shown in
With reference initially to
Pressurized dough from the first or primary compression head 22 flows out of the primary head outlet 30, into a mixing chamber 34 and thereafter into a converging inlet 42 of the rotating nozzle assemblies 40. A plurality of nozzle flow passages 48 connect the converging inlet 42 with a corresponding plurality of nozzle outlets 44a, 44b and 44c of each nozzle assembly 40. Each of the plurality of rotating nozzles or nozzle assemblies 40 is driven for rotation about an axis of rotation 46 by a drive assembly 50, including a drive motor 52 and a drive mechanism assembly 54. Preferably, each rotating nozzle assembly 40 includes at least two openings or outlets and in the present embodiment each such rotating nozzle assembly 40 includes at least three such openings, a central nozzle opening or outlet 44a centered about its own axis of rotation 46, and two lateral nozzle outlets 44b and 44c each radially offset from the axis of rotation 46 on opposite sides of the central nozzle opening 44a. Preferably the three nozzle openings 44a, 44b and 44c are arranged along a single row. The rotating nozzle assemblies 40 and drive assembly 50 are similar to corresponding components disclosed in the '796 patent. However, a comparison of
The nozzle axes of rotation 46 are orientated at an angle of approximately 45 degrees to the central longitudinal axis 26 of the first or primary compression head inlet 24. In contrast, in the '796 patent, a corresponding nozzle axis of rotation is substantially parallel to the corresponding primary compression head inlet central longitudinal axis. By thus “tilting” the rotating nozzle assemblies 40 at a non-parallel, non-perpendicular angle relative to the primary compression head inlet 24, and rotating the drive assembly 50, space is provided for the secondary compression head 60. The secondary compression head 60 allows second and/or third different types of dough to be injected into or mixed with the dough of the first type entering through the primary head inlet 24 and flowing through the primary head flow passage 28 just prior to the mixed dough being extruded through the openings of the nozzle assemblies 40.
The second or secondary compression head 60 includes a secondary compression head housing 62, having spaced apart inlets 64, 66, respectively. The secondary compression head housing 62 has an outlet 74, having a central longitudinal axis 76 which is preferably aligned with the rotating nozzle axes of rotation 46. The secondary compression head housing outlet 74 is connected to the inlets 64, 66 by flow passages 68 and 70, respectively. The flow passages 68, 70 are separated by a flow divider 72. It will be appreciated that the secondary compression head 60 may comprise a single, undivided housing 62 (i.e. without the divider 72) if desired. As shown in
For purposes of explaining the present invention the dough is stated as being of first, second or third “types.” The term “types” is intended to encompass its broadest meaning. For example, the first and second types of dough may be made from the exact same ingredients with one dough being one color, such as red, and the other dough being another color, such as green. Additionally, the first and second types of dough may be made from all of the same ingredients except the first dough may be a first flavor, such as vanilla, and the second dough may be another flavor, such as butter. Further, the first dough may be made from ingredients that give it a softer or gummier texture while the second dough may be made from ingredients that give it a harder or more brittle texture. Thus it should be clearly understood that any variation, even a minor variation, such as color or shades of color, could result in a different type of dough. Additionally, the second and third types of dough could be exactly the same in some applications.
In operation of the die machine, a first type of dough (not illustrated) from the first extruder 80 enters the primary head inlet 24 under pressure, and passes through the primary head flow passage 28, out of the outlet 30 and into the mixing chamber 34. Simultaneously, second and third types of dough (not illustrated) enter the secondary compression head 60 inlets 64 and 66 under pressure, pass through the flow passages 68 and 70, out of the outlet 74 and into the mixing chamber 34 where they are injected into or mixed with the first type of dough. Thereafter the mixed dough flows through the converging inlet 42 and then to the rotating nozzle assemblies 40. Significantly, the first, second and/or third types of dough are not mixed until just slightly before being extruded through the openings in the nozzle assemblies 40.
The three individual streams of the first, second and third types of dough mix in the mixing chamber 34 in a seemingly random manner. However, the manner in which the three streams of dough are mixed is repeatable and subject to precise control by controlling the extruders 80, 82 and 84 to control the individual pressures at which each of the individual dough streams are injected into the mixing chamber 34. The resulting dough mixture is extruded through the rotating nozzles 40, and is deposited onto a conveyor belt (not shown) for further processing. The degree of spiral winding or twisting created in the final product is controlled by controlling the rotational speed of the rotating nozzles 40 relative to the speed of the conveyor belt.
Thus, as described, the compression head assembly 10, having both primary and secondary compression heads 20, 60 along with the rotating nozzle assemblies 40 as illustrated, is capable of combining three separate streams of differing types of dough, including but not limited to variations in color, textures, and/or flavors into braided (or twisted) food products. Note that one implication of the in-line arrangement of the nozzle outlets 44a, 44b and 44c is that the braided food product produced includes a central, substantially un-spiraled strand formed by the central nozzle outlet 44a, and two additional strands formed by the lateral nozzle outlets 44b and 44c, spiraled about the central strand.
The various components of the compression head assembly 10 are preferably fabricated from conventional, food-grade materials such as stainless steel using conventional manufacturing techniques such as stamping and milling.
With reference now to
It will be appreciated by those skilled in the art that changes could be made to the preferred embodiments 10, 110 of the rotating nozzle die machine described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but is intended to cover modifications within the spirit and scope of the present application as defined by the appended claims.
This application claims the benefit of Provisional Application No. 60/710,221 entitled Rotating Nozzle Die Machine for Dough Extrusion, filed Aug. 22, 2005, the contents of which are incorporated herein, by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1709280 | Ost | Apr 1929 | A |
2049362 | Farmer | Jul 1936 | A |
2199825 | Kretchmer | May 1940 | A |
2856868 | Kennedy | Oct 1958 | A |
3180912 | Rowe, Jr. | Apr 1965 | A |
3241503 | Schafer | Mar 1966 | A |
3694292 | Schippers et al. | Sep 1972 | A |
4164385 | Finkensiep | Aug 1979 | A |
4288463 | Groff et al. | Sep 1981 | A |
4315724 | Taoka et al. | Feb 1982 | A |
4329163 | Russell | May 1982 | A |
4358468 | Dolan et al. | Nov 1982 | A |
4445838 | Groff | May 1984 | A |
4524081 | Bansal | Jun 1985 | A |
4643904 | Brewer et al. | Feb 1987 | A |
4832960 | Compagnon | May 1989 | A |
4900572 | Repholz et al. | Feb 1990 | A |
4906171 | Miller | Mar 1990 | A |
5037285 | Kudert et al. | Aug 1991 | A |
5077074 | Van Lengerich | Dec 1991 | A |
5492706 | Cockings et al. | Feb 1996 | A |
5620713 | Rasmussen | Apr 1997 | A |
5626892 | Kehoe et al. | May 1997 | A |
5670185 | Heck et al. | Sep 1997 | A |
5834040 | Israel et al. | Nov 1998 | A |
5955116 | Kehoe et al. | Sep 1999 | A |
6276919 | Jensen et al. | Aug 2001 | B1 |
6332767 | Kudert et al. | Dec 2001 | B1 |
6379733 | Matthews et al. | Apr 2002 | B2 |
6428830 | Matthews et al. | Aug 2002 | B1 |
6431847 | Hawley et al. | Aug 2002 | B1 |
6450796 | Groff et al. | Sep 2002 | B1 |
6506401 | Rothamel et al. | Jan 2003 | B1 |
6561784 | Atwell | May 2003 | B1 |
6626660 | Olson et al. | Sep 2003 | B1 |
6709255 | Kappes et al. | Mar 2004 | B2 |
6805543 | Fux et al. | Oct 2004 | B2 |
6896504 | Horna et al. | May 2005 | B2 |
7008204 | Franke et al. | Mar 2006 | B2 |
7192541 | Ardouin | Mar 2007 | B2 |
7270531 | Proulx et al. | Sep 2007 | B2 |
20020079607 | Hawley et al. | Jun 2002 | A1 |
20020084281 | Horna et al. | Jul 2002 | A1 |
20030228400 | Dahl et al. | Dec 2003 | A1 |
20050226984 | Addington et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080031988 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60710221 | Aug 2005 | US |