This invention relates to a new and improved orthodontic bracket appliance for use in edgewise or straight-wire techniques to facilitate tipping movement of a tooth and sliding of the bracket along an archwire, including structure to minimize frictional resistance, thereby reducing the time of completing the movement to the desired location along the arch, and enhancing the health and comfort of the patient.
The bracket of the present invention includes a rotating archwire-receiving member and a base mountable on a tooth so as to reduce the friction between the archwire and the archwire-receiving member of the bracket. Accordingly, the time of retraction movement of a tooth on which the bracket is mounted to a desired position is significantly shortened. Root resorption is minimized due to the application of light forces, thereby maintaining the integrity of the root and surrounding bone. Accordingly, comfort to the patient is greatly enhanced. This is accomplished in that the bracket includes a base mountable on a tooth and an archwire-receiving member rotatably mounted on the base wherein engageable surfaces between the archwire-receiving member and the base have reduced friction during rotation of the archwire-receiving member on the base member. A unique locking mechanism locks the archwire-receiving member against rotation on the base when the desired movement has been obtained so that forces can be applied to the bracket to direct it to its desired erect position. The archwire-receiving member is rotated so that it is aligned with respect to the tooth and the locking device can be inserted to lock the archwire-receiving member to the base. In this position, the predetermined prescription of the bracket to move the tooth to its ideal position will be achieved. The lock employed is an insert to an archwire-receiving member that locks the member to a rotary axle in such a way that it can no longer turn.
It will be appreciated that the appliance of the invention may be designed with any of the well-known prescriptions utilized in the orthodontic field to obtain the desired final positioning of the teeth on which the appliance is mounted. It may also be made of various materials, such as ceramic, zirconia, plastic or acrylic. Accordingly, in the final stages of treatment, a locking device is inserted to lock the archwire-receiving member to the base. The archwire must first be removed from the archwire slot before rotating and locking the archwire-receiving member to the base. Following insertion of the locking device, the archwire-receiving member cannot rotate relative to the base. Thereafter, the archwire is flexed as needed and reinserted into the slot, and ligated to the archwire-receiving member after which the tooth will be up righted into its ideal position.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
Referring now to the drawings and particularly to the embodiments of
During the tipping of the tooth and the sliding movement of the tooth and bracket along the archwire, the archwire-receiving member freely rotates on the base so that the bracket can easily slide along the archwire to the predetermined position in which the tooth may then be uprighted. It will be appreciated that suitable force modules, such as springs or elastics, will be employed to cause movement of the tooth and bracket along the archwire. Once the tooth is in the desired position and it is necessary to upright the tooth, the archwire-receiving member is locked to the base so that the archwire can then apply upright forces, as will be more clearly explained below. A locking device is inserted into the bracket between the archwire-receiving member and the base to engage the archwire-receiving member and lock it to the base when they are aligned with each other.
Referring to
Referring to
The interior walls of the body member 220 form a hexagon. Thus, the interior 225 of the body member 220 has straight sides that intersect to form corners. The particular hexagonal shape is not required, however, and other non-circular shapes such as octagons, squares or other polygonal or even irregular shapes may be used. As will be explained below, the purpose of a non-circular interior 225 in the body member 220 is to provide a keyway function for a corresponding locking member, so virtually any key and keyway shape may suffice for this purpose.
The body member 220 rotates on an axle 230 that is press-fitted into the base 210 through a central aperture 221 in the body member 220. The axle 230 has a distal end 232 with a shaved flat side so as to fit into a correspondingly shaped hole 211 in the base 210 in a key and keyway configuration to prevent rotation of the axle 230. An intermediate cylindrical portion 234 provides a bearing surface for the body member 220. Its central aperture 221 is slightly larger in diameter than the cylindrical portion 234 and provides a modest amount of friction so that the cylindrical portion 234 functions as a bearing, permitting rotation of the body member 220 about the axle. The axle 230 has a head 236 shaped like a hex bolt head. The head 236 occupies part of the interior space of the body member 220 but does not contact its interior walls (shown best in
The bracket body member 220 is thus permitted to rotate freely in the early stages of treatment and to do so requires only a cover member 240, which fits over the hex head 236. The cover member has a circular bottom opening 242 of a diameter that exceeds the largest outer diameter of the hex head 236 (refer to
In the later stages of treatment, it is desirous to lock the bracket to prevent the body member 220 from rotating. In such a case, the cover member 240 is removed and the lock spring 250 is inserted. The spring 250 is a hexagonal cylinder whose outer walls fit inside the interior hexagonal walls of the body member 220 and which has an aperture 251 shaped to fit over the hex head 236 of the axle 230 like a socket wrench. The lock spring 250 may have a lateral slot that permits it to be flexed for easy insertion. Once inserted it fits snugly onto the head 236 and inside the body member 220 thus preventing its rotation. The lock spring 250 may also have side tabs 252 that snap into cutouts in the body member 220 to hold the lock spring 250 in position.
It is to be understood that other variations in shape and configuration of the axle and bearings are possible. For example, the axle and the pin could have different shapes or sizes and could fit together in ways different from what is shown. The pin need not be rectangular. It could have any shape as long as its insertion next to the axle would prevent the bracket from rotating. The locking spring and the axle head could also have different shapes, such as square, octagonal, or other polygon or irregular shape. All that is necessary is that the spring bears against the inner walls of the body member and that it fit over the head of the axle so as to prevent rotation.
While the invention has been described with respect to certain preferred embodiments, as will be appreciated by those skilled in the art, it is to be understood that the invention is capable of numerous changes, modifications and rearrangements and such changes, modifications and rearrangements are intended to be covered by the following claims.
The terms and expressions that have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/342,582 filed Jan. 3, 2012, currently pending, which is in turn a continuation-in-part of U.S. patent application Ser. No. 12/807,859 filed Sep. 14, 2010 (now U.S. Pat. No. 8,113,828 issued Feb. 14, 2012).
Number | Name | Date | Kind |
---|---|---|---|
2368851 | Laskin | Feb 1945 | A |
2379011 | Laskin | Jun 1945 | A |
3203098 | Petraitis | Aug 1965 | A |
3423833 | Pearlman | Jan 1969 | A |
3721005 | Cohen | Mar 1973 | A |
4139945 | DiGiulio | Feb 1979 | A |
4243387 | Prins | Jan 1981 | A |
4353692 | Karrakussoglu | Oct 1982 | A |
4597739 | Rosenberg | Jul 1986 | A |
4867678 | Parker | Sep 1989 | A |
5302121 | Gagin | Apr 1994 | A |
5954502 | Tuenge et al. | Sep 1999 | A |
7306458 | Lu et al. | Dec 2007 | B1 |
7431586 | Silverman | Oct 2008 | B1 |
20070092849 | Cosse | Apr 2007 | A1 |
20070259302 | Jayawardena | Nov 2007 | A1 |
20080293005 | Rahlis et al. | Nov 2008 | A1 |
20110300502 | Kishi | Dec 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120276496 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13342582 | Jan 2012 | US |
Child | 13463722 | US | |
Parent | 12807859 | Sep 2010 | US |
Child | 13342582 | US |