The present disclosure relates to rotation assemblies of surgical instruments and, more particularly, to rotation assemblies and energy-based surgical instruments for grasping, treating, and/or dividing tissue incorporating such rotation assemblies.
Some energy-based surgical instruments, such as energy-based surgical forceps, utilize mechanical clamping action and application of energy, e.g., radio frequency (RF) energy, ultrasonic energy, microwave energy, light energy, thermal energy, etc., to affect hemostasis by heating tissue to coagulate, cauterize, and/or seal tissue. Coagulation may be sufficient to achieve hemostasis on some tissue, e.g., non-vascular tissue, small blood vessels below about two millimeters in diameter, and tissues including small vessels. However, for other tissue, e.g., large blood vessels above about two millimeters in diameter and tissues including larger vessels, coagulation may be insufficient to achieve hemostasis; instead, these tissues may be required to be sealed, a process by which the collagen in the tissue is heated up, denatured, and reformed into a fused mass to permanently close the vessel(s). Once hemostasis is achieved, the treated tissue may be cut (mechanically, electrically, or electro-mechanically) to divide the tissue.
As used herein, the term “distal” refers to the portion that is being described which is further from an operator, e.g., a surgeon, while the term “proximal” refers to the portion that is being described which is closer to the operator. Terms including “generally,” “about,” “substantially,” and the like, as utilized herein, are meant to encompass variations, e.g., manufacturing tolerances, material tolerances, use and environmental tolerances, measurement variations, and/or other variations, up to and including plus or minus 10 percent. Further, any or all of the aspects described herein, to the extent consistent, may be used in conjunction with any or all of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is a rotation assembly for a surgical instrument and a surgical instrument including a rotation assembly. The rotation assembly includes first and second bodies, such that one of the first or second bodies is fixedly disposed within the housing of the surgical instrument and defines a central bore that is configured to rotatably receive a shaft of the surgical instrument. The other of the first or second bodies is rotatably disposed within the housing and fixedly disposed about the shaft. The shaft extends distally from the housing and is rotatable relative to the housing. An inner contact ring is fixedly disposed on the first body and includes a first electrical connector coupled thereto. An outer contact ring is fixedly disposed on the first body and includes a second electrical connector coupled thereto, such that the outer contact ring is electrically isolated from the inner contact ring. The first and second spring contacts are configured to maintain electrical contact with the inner and outer contact rings, respectively. Each of the first and second spring contacts includes a substructure, such that the sub-structure includes a brush holder that is positioned towards a first end portion thereof and an extension that is positioned towards a second end portion thereof, an electrical connector disposed on the extension, and a brush that is slidably disposed partially within the brush holder. The brush includes a contact portion that extends from the brush holder and that is configured to establish electrical contact with the inner or outer contact ring. Each of the first and second spring contacts further include a spring that is disposed at least partially within the brush holder, the spring being configured to bias the brush towards the inner or outer contact ring to maintain electrical contact therebetween.
In an aspect of the present disclosure, first body is a continuous rotation assembly and the second body is a rotation wheel of the surgical instrument.
In another aspect of the present disclosure, the rotation assembly further includes a disc disposed within the first body, the disc including: a proximal face, a distal face, and an outer rim.
In yet another aspect of the present disclosure, the distal face is recessed relative to the outer rim.
In still another aspect of the present disclosure, the outer rim is configured for rotatable receipt within a recessed portion of the second body, such that a cavity is formed between the distal face of the disc and the recessed portion of the second body.
In still yet another aspect of the present disclosure, both the inner and outer contact rings are disposed within the cavity.
In another aspect of the present disclosure, the inner contact ring disposed within the cavity is fixed relative to the recessed portion of the second body and fixed relative to the first electrical connector.
In yet another aspect of the present disclosure, the outer contact ring disposed within the cavity is fixed relative to the recessed portion of the second body and fixed relative to the second electrical connector.
In still another aspect of the present disclosure, the rotation assembly further includes a frame defined on the distal face of the disc to surround the central bore and configured to be fixedly captured within the housing.
In still yet another aspect of the present disclosure, the second body is configured to rotate the shaft into a desired orientation, relative to the housing.
In another aspect of the present disclosure, the second body is rotatable continuously in either direction without limitation.
In yet another aspect of the present disclosure, the second body includes a plurality of flutes arranged annularly about an annular periphery thereof.
In still yet another aspect of the present disclosure, the brush is a carbon graphite brush.
In another aspect of the present disclosure, the rotation assembly further includes a distal pair of connector slots disposed in the second body, the distal facing pair of connector slots configured to receive the first and second electrical connectors.
In yet another aspect of the present disclosure, the rotation assembly further includes a proximal pair of connector slots disposed in the first body, the proximal facing pair of connector slots configured to receive a distal pair of electrical connectors.
The above and other aspects and features of the present disclosure will become more apparent in view of the following detailed description when taken in conjunction with the accompanying drawings wherein like reference numerals identify similar or identical elements.
Referring generally to
Shaft 100 extends distally from housing 200 and supports end effector assembly 700 at a distal end portion 104 thereof. More specifically, shaft 100 includes a proximal collar 110 engaged about a proximal end portion 102 thereof that is rotatably secured within housing 200 to rotatably support proximal end portion 102 within housing 200. Proximal end portion 102 of shaft further defines a pair of opposed longitudinally-extending slots 112 and a proximal cut-out 114.
Distal end portion 104 of shaft 100 defines a clevis 120 within which fixed jaw member 760 of end effector assembly 700 is fixedly secured. More specifically, clevis 120 defines weld access apertures 122 through the spaced-apart flags 124, 126 thereof that facilitate laser welding of the spaced-apart flags 766, 768 of proximal flag portion 764 of fixed jaw member 760 to flags 124, 126 of clevis 120, respectively, on the respective interior sides of flags 124, 126 of clevis 120. Other weld locations may additionally or alternatively be provided and/or proximal flag portion 764 of fixed jaw member 760 may be secured within clevis 120 in any other suitable manner. One of the flags 124, 126 of clevis 120, e.g., flag 124 further defines a cut-out 128 (
With the exception of weld access apertures 122, the outer surfaces of flags 124, 126 of clevis 120 are smooth and continuous, e.g., without interruption from, for example, cam slots, pivot apertures, etc. Thus, entry of fluids, debris, etc. is inhibited as is catching on or interference by a trocar, other instrument, tissue, debris, etc.
Continuing with reference to
Housing parts 210, 220 may either, both, or collectively, define: alignment features 230 (e.g., complementary pegs and apertures, inter-engaging outer edges, etc.) configured to facilitate alignment of housing parts 210, 220 for securement to one another and to maintain alignment thereof; a cable aperture 232 configured to enable passage of cable 900 into housing 200; wire routing features 234 (e.g., guide slots, retention caps, etc.) configured to guide the lead wires 910, 920 from activation assembly 800 to rotation assembly 400 while inhibiting interference thereof with the other operable components within housing 200; an activation button aperture 236 through which activation button 810 of activation assembly 800 protrudes; board support 238 for supporting circuit board 820 of activation assembly 800; a movable handle and trigger slot 240 through which movable handle 310 of drive assembly 300 and trigger 510 of trigger assembly 500 extend from housing 200; opposed rotation wheel windows 242 configured to receive opposed sides of rotation wheel 410 of rotation assembly 400; a distal aperture 244 through which shaft 100 extends distally from housing 200; guide tracks 246 to guide translation of carriage 330 of drive assembly 300; movable handle pivot recesses 248 configured to enable pivotable engagement of movable handle 310 within housing 200; first and second trigger assembly pivot recesses 250, 252 configured to enable pivotable engagement of trigger 510 and linkage 530 of trigger assembly 500 within housing 200; and a partition 254 defining a shaft aperture 256 configured to receive and rotatably support proximal collar 110 and proximal end portion 102 of shaft 100. Housing 200 further includes a body portion 280 and a fixed handle portion 290 depending from body portion 280.
With reference to
A pivot pin 702 is configured to extend through aligned pivot apertures 732, 772 to pivotably couple jaw members 720, 760 with one another, while a cam pin 704 is configured for receipt within cam slots 730, 770 to operably couple jaw members 720, 760 with one another, e.g., such that translation of cam pin 704 through cam slots 730, 770 pivots jaw member 720 relative to jaw member 760. Arcuate cam slots 730 facilitate smooth and consistent pivoting of jaw member 720, e.g., inhibiting binding, while longitudinal cam slots 770 facilitate guiding translation of cam pin 704.
With additional reference to
Typically, structural jaw frames are formed via progressive die stamping (or other suitable stamping process), wherein the structural jaw frame is punched from stock material and bent to achieve the desired configuration. Progressive die stamping is advantageous in that it facilitates high volume production. Structural jaw frame 722, however, includes features that make difficult if not inhibit utilization of progressive die stamping. In particular, cam slots 730 extend close to the edge of flags 726, 728, forming thin sections that are not wide enough for die stamping tools, and, likewise, the spacing between flags 726, 728 relative to the height of flags 726, 728 (before bending) is too narrow for die stamping tools. Thus, as an alternative to progressive die stamping, wherein the features are punched into the blank, structural jaw frame 722 may be formed from laser cutting the blanks, wherein structural jaw frame 722 is first cut from sheet stock and/or roller stock using a modulated fiber laser system, e.g., to form cam slots 730 and pivot aperture 732, among other features, and is then fed to tooling to create the additional features, e.g., bends, coins, etc., thereof.
The laser cutting and formation process for manufacturing structural jaw frame 722 may be done in a number of ways such as, for example: the laser cut parts can be singulated, and fed into stage form tooling or transfer tooling (in a manual or automated fashion); the laser cut parts can remain in strips cut to length and fed into stage form tooling, transfer tooling, or progressive tooling (in a manual or automated fashion); or the laser cut parts can remain on a continuous strip and be fed into stage form tooling, transfer tooling, or progressive tooling.
The structural jaw frame 762 of jaw member 760 (
Referring again to
Continuing with reference to
Each electrically-conductive plate 750, 790 includes a lead wire 754, 794 attached thereto and extending proximally therefrom through shaft 100. More specifically, lead wires 754, 794 are attached, e.g., soldered, to undersides of electrically-conductive plates 750, 790, respectively, and extend proximally through insulative jaw bodies 740, 780, proximally therefrom, and into shaft 100. Lead wires 754, 794 are disposed on opposite sides of end effector assembly 700 and are positioned exteriorly of proximal flag portions 724, 764 of jaw members 720, 760, respectively. Lead wire 754 of jaw member 720, the movable jaw member, extends across, on the interior side thereof, cut-out 128 of flag 124 of clevis 120, thus enabling movement of lead wire 754 as jaw member 720 is pivoted relative to jaw member 760 and clevis 120 without catching of lead wire 754 on clevis 120 or clevis 120 otherwise constraining the movement of lead wire 754 in response to the pivoting of jaw member 720.
Insulative jaw bodies 740, 780 and electrically-conductive plates 750, 790 of jaw members 720, 760, respectively, cooperate to define knife channel portions 758, 798 extending longitudinally therethrough. Knife channel portions 758, 798 define open proximal ends to permit insertion of knife blade 626 therein and closed distal ends that terminate proximally of the distal ends of electrically-conductive plates 750, 790. Knife channel portions 758, 798 define curved configurations that generally conform to the curvature of jaw members 720, 760. In the approximated position of jaw members 720, 760, knife channel portions 758, 798 align with one another to define a full knife channel to facilitate and guide reciprocation of knife blade 626 through jaw members 720, 760 to cut tissue, e.g., treated tissue, grasped therebetween.
As detailed above, clevis 120 defines weld access apertures 122 through the spaced-apart flags 124, 126 thereof that facilitate laser welding of the spaced-apart flags 766, 768 of proximal flag portion 764 of fixed jaw member 760 to flags 124, 126 of clevis 120, respectively, on the respective interior sides of flags 124, 126 of clevis 120. This welding of proximal flag portion 764 of fixed jaw member 760 to flags 124, 126 of clevis 120 captures pivot pin 702 and cam pin 704 between flags 124, 126 of clevis 120, thereby securing pivot pin 702 within aligned pivot apertures 732, 772 of jaw members 720, 760 and securing cam pin 704 within cam slots 730, 770 of members 720, 760. Proximal flag portions 724, 764 of members 720, 760 cooperate with clevis 120 to define a lockbox configuration, adding lateral stability and support to end effector assembly 700.
Jaw member 720 is pivotable relative to jaw member 760 and clevis 120 about pivot pin 702 in response to translation of cam pin 704 through cam slots 730, 770 between a spaced-apart position, wherein electrically-conductive plate 750, 790 are farther apart from one another, and an approximated position, wherein electrically-conductive plates 750, 790 are in closer approximation to one another. More specifically, proximal translation of cam pin 704 through cam slots 730, 770 pivots jaw member 720 towards the approximated position, while distal translation of cam pin 704 through cam slots 730, 770 pivots jaw member 710 towards the spaced-apart position. In the approximated position, jaw members 720, 760 are capable of grasping tissue between electrically-conductive plates 750, 790 thereof. Lead wires 754, 794 are adapted to connect to a source of electrosurgical energy, e.g., an electrosurgical generator (not shown), such that, upon activation, electrically-conductive plates 750, 790 are energized to different potentials to enable the conduction of energy therebetween and through the grasped tissue to treat, e.g., seal, the grasped tissue.
With reference to
Distal knife bar 620 is formed by an etching process (or in any other suitable manner) and includes a body 622 defining a longitudinally-extending cut-out 624 and a knife blade 626 at a distal end thereof, distally of longitudinally-extending cut-out 624. A proximal end portion of body 622 of distal knife bar 620 overlaps a distal end portion of proximal knife bar 630 in side-by-side arrangement to enable securement therebetween, e.g., via laser welding. A laser weld aperture 623 may be defined through body 622 to facilitate such securement. Alternatively or additionally, a weld aperture may be defined through proximal knife bar 630 for similar purposes.
Distal knife bar 620 defines a reduced height as a result of and along the extent of longitudinally-extending cut-out 624. This reduced height portion of distal knife bar 620 enables distal knife bar 620 to extend underneath pivot pin 702 and cam pin 704 (see
Knife blade 626 defines an etched distal cutting edge 628 that may define a generally arrow-shaped configuration wherein first and second angled cutting edges 629a angle proximally from a distal apex 629b. Distal cutting edge 628 may be formed via etching on one side of knife blade 626 or both sides thereof and is sharp to facilitate cutting through tissue upon translation of knife blade 626 to the extended position.
Proximal knife bar 630 is formed by a stamping process (or in any other suitable manner, similar or different from the formation of distal knife bar 620) and, as noted above, defines a distal end portion that overlaps the proximal end portion of body 622 of distal knife bar 620 in side-by-side arrangement to enable securement therebetween, e.g., via laser welding. Proximal knife bar 630 is configured for slidable receipt within tube plug 650 and includes a proximal aperture 632 configured for receipt of spindle pin 640 transversely therethrough. Spring pin 640 extends transversely through and outwardly from either side of a longitudinal slot 652 defined within tube plug 650. Longitudinal slot 652 define a suitable length to accommodate translation of spindle pin 640 relative to tube plug 650 to actuate knife blade 626 between the retracted and extended positions.
Tube plug 650 is configured for slidable receipt within proximal drive sleeve 360 of drive assembly 300 and servers to maintain the position and orientation of knife 610 therein (see
Referring to
Linkage 320 is disposed within housing 200, pivotably coupled to body 312 of movable handle 310 at a distal end portion thereof, and pivotably coupled to carriage 330 at a proximal end portion thereof. In this manner, pivoting of movable handle 310 from the un-actuated position towards the actuated position urges linkage 320 proximally and also pivots linkage 320 from a more-angled orientation to a more-longitudinal orientation.
Carriage 330 is slidably received within body portion 280 of housing 200 and, more specifically, includes bosses 332 extending outwardly from either side thereof that are received within guide tracks 246 of housing 200 to guide translation of carriage 330 through and relative to body portion 280 of housing 200. Carriage 330 includes a body 334 defining a seat 336, and a bifurcated neck 338 extending upwardly from body 334 at a proximal end portion thereof on either side of proximal drive sleeve 360, which extends through carriage 330. First fixed collar 392 is fixed about proximal drive sleeve 360, e.g., via keyed engagement, and is positioned distally of bifurcated neck 338 of carriage 330 to define a distal stop to sliding of carriage 330 about drive sleeve 360. Sliding collar 380 is slidably disposed about proximal drive sleeve 360 and is positioned within seat 336 proximally of bifurcated neck 338. Nested spring assembly 340, including an outer compression spring 342 and an inner compression spring 344 nested within outer compression spring 342, is also seated within seat 336 and positioned proximally of sliding collar 380. Inner and outer compression springs 342, 344 are slidably disposed about proximal drive sleeve 360. Second fixed collar 394 is fixed about proximal drive sleeve 360, e.g., via keyed engagement, and is positioned proximally of nested spring assembly 340. Proximal stop collar 396 is fixed within housing 200 and slidable about a proximal end portion of proximal drive sleeve 360. Proximal stop collar 396 may be slidably engaged within a keyway defined within proximal drive sleeve 360 or may be coupled thereto in any other suitable manner. Return spring 350 may be a conical spring and is disposed about proximal drive sleeve 360 between second fixed collar 394 and proximal stop collar 396.
Proximal drive sleeve 360 defines opposed longitudinally-extending slots 364 defined therethrough to enable spindle pin 640 to extend through and outwardly from either side of proximal drive sleeve 360 while still enabling relative sliding of proximal drive sleeve 360 and spindle pin 640 relative to one another. Spindle pin 640 also extends through opposed longitudinally-extending slots 112 of shaft 100 and outwardly from either side thereof. Slots 112, 364 at least partially overlap regardless of the relative position between proximal drive sleeve 360 and shaft 100 such that spindle pin 640 is not interfered with. Slots 112, 364 also provide a passage for lead wires 754, 794 to extend therethrough, enabling lead wires 754, 794 to extend from rotation assembly 400 (external of shaft 100 and proximal drive sleeve 360) through slots 112, 364 and into proximal drive sleeve 360 (which is disposed within shaft 100). As slots 112, 364 at least partially overlap regardless of the relative position between proximal drive sleeve 360 and shaft 100, lead wires 754, 794 are likewise not interfered with.
With particular reference to
A distal tube guide 150 is disposed between flags 124, 126 of clevis 120 at the fixed proximal ends thereof and extends proximally into distal end portion 104 of shaft 100. Distal tube guide 150 defines a vertical slot 152 configured to slidably receive and guide translation of distal drive frame 370. Distal tube guide 150 further includes a wire guide channel 154 on either side thereof. Wire guide channels 154 are configured to guide lead wire 754, 794 from jaw members 720,760 about distal drive frame 370, into distal end portion 104 of shaft 100 and, from there, into proximal drive sleeve 360.
Referring again to
When a force resisting further approximation of jaw member 720 towards jaw member 760, e.g., a force of tissue resisting compression, is sufficiently great, e.g., large enough to overcome the spring force of springs 342, 344, sliding collar 380 no longer urges springs 342, 344 of nested spring assembly 340 to translate proximally to further approximate jaw member 720 towards jaw member 760. Rather, in this condition, sliding collar 380 is urged into nested spring assembly 340 and compresses springs 342, 344 against second fixed collar 394 while second fixed collar 394 remains substantially stationary within housing 200. Thus, springs 342, 344 compress to absorb further motion of movable handle 310, linkage 320, and carriage 330, allowing proximal drive sleeve 360 and movable jaw member 720 to remain substantially stationary, thus inhibiting application of additional jaw force to tissue grasped between jaw members 720, 760. In this manner, drive assembly 300 and, in particular, springs 342, 344 thereof, control the application of jaw force to tissue grasped between jaw members 720, 760. Instrument 10 (
Springs 342, 344 of nested spring assembly 340 are configured to control jaw force to within a desired range, e.g., 3 kg/cm2 to about 16 kg/cm2, and/or to limit jaw force to or below a threshold value. A single compression spring, based on the design considerations for instrument 10, would be required to have a diameter of about 0.75 inches and a pre-loaded length of about 1.10 inches in order to provide the requisite force(s) for controlling jaw force. In order to provide a more compact design, nested springs 342, 344 are utilized in place of a single compression spring and provide a pre-loaded length of about 0.85 inches and a diameter of about 0.69 inches, thus providing a more compact configuration. Springs 342, 344 may define the same or different at-rest lengths, spring constants, wire diameters, etc. The overall diameters of springs 342, 344 are different so as to enable spring 344 to be nested within spring 342.
In some configurations, a distal surface of sliding collar 380 and a proximally-facing surface of bifurcated neck 338 define cooperating rotational bearing surfaces, e.g., via application of lubricant therebetween, defined surface features (waves, bumps, etc.) on either or both surfaces, etc., to facilitating relative rotation therebetween when movable handle 310 is disposed in the actuated position corresponding to the approximated position of jaw members 720, 760. Alternatively or additionally, a bearing disc (not explicitly shown) may be disposed between sliding collar 380 and bifurcated neck 338 for similar purposes (with or without lubricant and/or defined surface features). In the actuated position of movable handle 310, bifurcated neck 338 is urged distally (directly or indirectly) into sliding collar 380, increasing friction therebetween, thus significantly increasing the difficulty of rotating shaft 100 (since sliding collar 380 is rotationally fixed about shaft 100 while bifurcated neck 338 is not rotatable with shaft 100). The above-noted bearing feature(s) reduce this friction, thereby facilitating rotation of shaft 100 when movable handle 310 is disposed in the actuated position corresponding to the approximated position of jaw members 720, 760.
Referring still to
The above-detailed drive assembly 300 also provides an over-center or near-over-center mechanism with respect to pivot bosses 314 and the pivot points about which linkage 320 is pivotably coupled with movable handle 310 and carriage 330. That is, pivoting of movable handle 310 from the un-actuated position towards the actuated position urges linkage 320 proximally and also pivots linkage 320 from a more-angled orientation to a more-longitudinal orientation, thereby moving the pivot point about which linkage 320 is pivotably coupled with movable handle 310 towards or, in some configuration, into, longitudinal alignment with pivot bosses 314 and the pivot point about which linkage 320 is pivotably coupled with carriage 330. This over-center or near-over-center configuration provides mechanical advantage that reduces the force necessary to urge movable handle 310 to the actuated position.
With reference to
Rocker 520 defines a “T”-shaped configuration including an upright 522 and a crossbar 524. Cross bar 524 defines first and second snap-fit recesses 525, 526 on either side of upright 522. First snap-fit recess 525 is configured to receive, in snap-fit engagement, snap-fit legs 518 of trigger 510 to pivotably couple drive portion 512 of trigger 510 with rocker 520. Upright 522 defines a bifurcated configuration including first and second spaced-apart bodies 527 extending from crossbar 524 to free ends thereof. Forked connectors 528 are defined at the free ends of first and second spaced-apart bodies 527.
Linkage 530 includes a first end 532 having a pair of snap-fit legs 534 extending transversely therefrom. Snap-fit legs 534 are configured for receipt, in snap-fit engagement, within second snap-fit recess 526 of crossbar 524 to pivotably couple linkage 530 with rocker 520. Linkage 530 further includes a second end 536 defining a pair of pivot bosses 538 extending outwardly therefrom. Pivot bosses 538 are pivotably received within second trigger assembly pivot recesses 252 of housing 200 to pivotably couple second end 536 of linkage 530 with housing 200. The above-detailed configuration of trigger 510, rocker 520, linkage 530, and housing 200 cooperate to define a four-bar mechanical linkage wherein drive portion 512 of trigger 510, crossbar 524 of rocker 520, and linkage 530 serve as the three moving linkages in the four-bar linkage and the portion of housing 200 extending between first and second trigger assembly recesses 250, 252 defines the fixed linkage in the four-bar linkage. The above-detailed pivotable connections between trigger 510 and housing 200, trigger 510 and rocker 520, linkage 530 and rocker 520, and linkage 530 and housing 200 define the four pivot points in the four-bar linkage. A four-bar linkage provides increased mechanical advantage and a compact configuration that and allows for a relatively shorter actuation stroke length of trigger 510 to deploy knife 610 a relatively longer distance.
Continuing with reference to
With additional reference to
With movable handle 310 in the actuated position (
Distal pivoting of body 512 of trigger 510 urges crossbar 524 of rocker 520 distally. In order to permit this distal movement of crossbar 524 of rocker 520, linkage 530 is pivoted distally about second end 536 thereof. The distal movement of crossbar 524 of rocker 520 pulls upright 522 of rocker 520 distally and pivots upright 522 relative to spindle housing 540. The distal pulling of upright 522 pulls spindle housing 540 distally along shaft 100 such that spindle pin 640 is translated distally through slots 112, 364 to thereby advance knife 610 distally from the retracted position to the extended position wherein, as shown in
The distal translation of spindle housing 540 along shaft 100 to deploy knife 610 compresses spring 550 such that, upon release of trigger 510, the return force of spring 550 urges spindle housing 540 to return proximally, thereby urging rocker 520 to return proximally, linkage 530 to pivot proximally about second end 536 thereof, and urging finger tab 514 of trigger 510 distally back to the un-actuated position thereof.
Turning to
Rotation wheel 410 further defines a proximally-facing recess 418 (see
Continuous rotation assembly 420 includes a body 422, an inner contact ring 424 including an electrical connector 425 extending therefrom, an outer contact ring 426 including an electrical connector 427 extending therefrom, and first and second spring contacts 432, 434 each including a respective electrical connector 433, 435 extending therefrom. Body 422 is configured for rotatable engagement with rotation wheel 410, e.g., enabling rotation of rotation wheel 410 about body 422 and relative to housing 200, and includes a disc 436 and a frame 438 monolithically formed as a single piece, although other configurations are also contemplated. Disc 436 includes an outer rim 440 and a distally-facing surface 442 recessed relative to outer rim 440. Outer rim 440 of disc 436 is configured for rotatable receipt within proximally-facing recess 418 of rotation wheel 410, e.g., in snap-fit rotation engagement, such that a cavity is defined between distally-facing surface 442 of disc 436 and the recessed surface of proximally-facing recess 418 of rotation wheel 410. Frame 438 is configured to be fixedly captured within housing 200 (See
Inner and outer contact rings 424, 426 are disposed within the cavity defined between disc 436 and rotation wheel 410 and, more specifically, are fixed relative on and relative to the recessed surface of proximally-facing recess 418 of rotation wheel 410 with electrical connectors 425, 426, respectively, thereof extending into pass-through connector slots 419 to engage and electrically couple with lead connectors 755, 795 of lead wires 754, 794, respectively. Connectors 425, 426 and connectors 755, 795 may be male-female slide connectors configured to slide and lock into engagement and electrical coupling with one another, without the need for tools, soldering, etc. The connection between connectors 425, 426 and connectors 755, 795, respectively, electrically couples lead wires 754, 795 with inner and outer contact rings 424, 426, respectively.
First and second spring contacts 432, 434 are fixedly secured to body 422 and, thus, housing 200, at least via receipt of electrical connectors 433, 435 of spring contacts 432, 434, respectively, within pass-through connector slots 448. Electrical connectors 433, 435 are configured to slide and lock into engagement and electrical coupling with corresponding lead connectors 912, 922 of lead wires 910, 920, e.g., as male-female connectors detailed above. Lead wires 910, 920 are routed through housing 200 to activation assembly 800, which, in turn, is in electrical communication with wires associated with cable 900 to connect to the energy source, e.g., an electrosurgical generator (not shown), via plug 940 of cable 900 (see
First and second spring contacts 432, 434 are biased into contact with inner and outer contact rings 424, 426, respectively. More specifically, first and second spring contacts 432, 434 maintain contact with inner and outer contact rings 424, 426, respectively, regardless of the rotational orientation of rotation wheel 410 relative to body 422, thus maintaining electrical connection and permitting continuous, e.g., infinite, rotation of rotation wheel 410 in either direction relative to body 422 and housing 200. The electrical connection between first and second spring contacts 432, 434 and inner and outer contact rings 424, 426, respectively, electrically connects lead wires 910, 920 with lead wires 754, 794, thus enabling the conduction of energy, e.g., electrosurgical energy, from the generator to electrically-conductive plates 750, 790 of jaw members 720, 760, respectively, for treating tissue grasped therebetween (see
In other configurations of rotation assembly 400, first and second spring contacts 432, 434 can either or both be exchanged with another spring contact provided in accordance with the present disclosure: spring contact 450 shown in
Spring contact 450 is biased into contact with at least one of inner or outer contact rings 432, 434 by a spring 456 and a brush 454 that has electrically conductive properties, e.g., a carbon graphite brush. Spring 456 is disposed within the brush holder 452 and is positioned between a bracer 461 defined by the substructure 451 at one end and brush 454 at the other end. Brush 454 is partially inserted into brush holder 452 such that brush 454 can slide farther into or outwardly from the brush holder 452 against the bias of spring 456 or with the bias of spring 456, respectively. Spring 456 is at least partially compressed between the brush 454 and the bracer 461 of substructure 451 such that spring 456 continuously exerts a biasing force against brush 454 to ensure that brush 454 constantly maintains contact with at least one of inner or outer contact rings 424, 426, even if brush 454 wears down to a shorter length after prolonged use. Further, this arrangement ensures that spring contact 450 maintains contact with at least one of inner or outer contact rings 424, 426, regardless of the rotational orientation of rotation wheel 410 relative to body 422, thus maintaining electrical connection and permitting continuous, e.g., infinite, rotation of rotation wheel 410 in either direction relative to body 422 and housing 200. In aspects, a wire 455, e.g., a copper wire, is coupled to brush 454 and placed in contact with some portion of substructure 451 to electrically connect brush 454 and electrical connector 458 with one another.
Referring to
Electrical trace 822 extends along circuit board 820 from activation button 810 to connectors 832 disposed on circuit board 820. Another electrical trace 824 is connected to connector 834 on circuit board 820. Connectors 832, 834 may be male or female slide connectors, similarly as detailed above, configured to electrical couple with lead wires 910, 920 (
The establishment or breaking of electrical connection via the switch of activation button 910, e.g., as a result of the depression of activation button 810 by movable handle 310 to activation the switch of activation button 810, can be detected at the generator via monitoring at least one of the wires connected, e.g., soldered, to circuit board 820. Thus, the generator can readily determine when activation button 810 has been activated and, in response thereto, initiate the supply of energy through wires of cable 900 to circuit board 820 and, thus, to lead wires 910, 920 (
With reference to
Instrument 1010 includes a latching mechanism 1020 configured to lock movable handle 1310 in the actuated positon, thereby latching the jaw members thereof (not shown, the same as jaw members 720, 760 of instrument 10 (
Latching mechanism 1020 of instrument 1010 includes a latch arm 1030 coupled to movable handle 1310 and a latch track 1050 disposed within, e.g., defined within one (or both) of the housing parts 1210, 1220 of housing 1200, although the reverse configuration is also contemplated. Latch arm 1030 is monolithically formed as a single piece, e.g., via molding, and includes an engagement hook 1032 defined at a first end portion thereof and a transverse latch post 1034 protruding from one (or both) sides of latch arm 1030 at a second, opposite end portion thereof. Latch arm 1030 is flexible, enabling deflection of transverse latch post 1034 relative to engagement hook 1032 about at least two axes.
Engagement hook 1032 of latch arm 1030 defines a notch 1036 and a mouth 1038 providing access to notch 1036. Notch 1036 is circumferentially surrounded by engagement hook 1032 about at least 270 degrees of a circumference of notch 1036. Engagement hook 1032 is configured for snap-fit engagement about a latch boss 1319 of movable handle 1310 with latch boss 1319 passing through mouth 1038 and into engagement within notch 1036 wherein engagement hook 1032 provides at least 270 degrees of retention about latch boss 1319. Thus, engagement hook 1032 can be readily engaged and maintained in engagement about latch boss 1319. Latch boss 1319 may be monolithically formed with movable handle 1310.
Latch track 1050 of latching mechanism 1020 defines a tortuous path about a central block 1052, an upper guide rail 1054, a lower guide rail 1056, and a rear guide leg 1058. Latch track 1050, more specifically, includes an entry path 1062 defined between central block 1052 and lower guide rail 1056, a latching path 1064 defined around central block 1052 between lower guide rail 1056 and rear guide leg 1058 and interconnecting entry path 1062 with a saddle 1066 defined within central block 1052, an unlatching path 1068 defined around central block 1052 between rear guide leg 1058 and upper guide rail 1054 and interconnecting saddle 1066 with a return path 1070, and return path 1070 defined between central block 1052 and upper guide rail 1054. Return path 1070 includes a transverse ramp 1080 that, as detailed below, includes a proximal ramped end 1082 and a distal cliff end 1084.
Referring still to
Movable handle 1310 is further pivoted proximally to and beyond the actuated position to an over-actuated position to enable transverse latch post 1034 to clear central block 1052. Once transverse latch post 1034 clears central block 1052 and, thus, latch arm 1030 is no longer held in a deflected position thereby, latch arm 1030 is resiliently returned upwardly such that transverse latch post 1034 is urged towards or into contact with rear guide leg 1058. This may be confirmed by audible and/or tactile feedback.
Once movable handle 1310 reaches the over-actuated position, movable handle 1310 may be released (or returned), allowing movable handle 1310 to return distally back towards the actuated position under the bias of the return spring (not shown, the same as return spring 350 (
In order to release movable handle 1310 from the latched condition and enable return of the jaw members to the spaced-apart position, e.g., after tissue treatment and/or cutting, or to re-grasp tissue, movable handle 1310 is again pivoted proximally from the actuated position to the over-actuated position. When movable handle 1310 is pivoted to the over-actuated position, transverse latch post 1034 is moved proximally from saddle 1066 through the unlatching path 1068 to clear central block 1052, thus allowing latch arm 1030 to further resiliently return upwardly such that transverse latch post 1034 is urged towards or into contact with upper guide rail 1054.
Once movable handle 1310 reaches the over-actuated position, movable handle 1310 may be released (or returned), allowing movable handle 1310 to return distally. This distal return of movable handle 1310 pulls transverse latch post 1034 distally through return path 1070, between upper guide rail 1054 and central block 1052. As transverse latch post 1034 is moved distally through return path 1070, transverse latch post 1034 ramps over proximal ramped end 1082 of transverse ramp 1080 and along transverse ramp 1080, thereby increasingly deflecting latch arm 1030 transversely (e.g., about a second axis) until transverse latch post 1034 falls off distal cliff end 1084 of transverse ramp 1080, allowing latch arm 1030 to resiliently return transversely. After transverse latch post 1034 falls off distal cliff end 1084 of transverse ramp 1080, proximal return of transverse latch post 1034 through return path 1070 is inhibited and, thus, re-actuation of movable handle 1310 thereafter moves transverse latch post 1034 along entry path 1062. In the absence of re-actuation of movable handle 1310, movable handle 1310 continues to return distally towards the un-actuated position, allowing transverse latch post 1034 to clear latch track 1050 and allowing latch arm 1030 to return to its initial position corresponding to the un-actuated position of movable handle 1310.
While several configurations of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular configurations. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/122,062, filed on Dec. 15, 2020, the entire contents of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17122062 | Dec 2020 | US |
Child | 17521694 | US |