1. Field of the Invention
The present invention relates to a rotation-force adjusting device, and more particularly to a rotation-force adjusting device for a toy gun that may prevent a pellet rubbing against and damaging a pressing block of the rotation-force adjusting device.
2. Description of Related Art
With reference to
The adjusting unit 80 is mounted around the pressing tube 70 and has a force ring 81 and a control knob 82. The force ring 81 is mounted around the abutting portion 72 of the pressing tube 70. The force ring 81 has an adjusting block 811 and a screw hole 812. The adjusting block 811 is formed on and protrudes radially from a bottom portion of an outer surrounding surface of the force ring 81. The screw hole 812 is formed through the adjusting block 811. The control knob 82 is a screw, has a rotating disk and a screw rod, the screw rod is formed on and protrudes from a top surface of the rotating disk, the screw rod of the control knob 82 is mounted through the force ring 81 and extends upward into the screw hole 812, and this makes the screw rod of the control knob 82 screwed with the screw hole 812 of the adjusting block 811.
The gun body 90 is mounted around the pressing tube 70 and the adjusting unit 80, and the gun body 90 is positioned with the adjusting unit 80. The gun body 90 has an inner barrel 91, two half-shells 92, and an outer barrel 93. The inner barrel 91 is mounted in the pressing tube 70 via the ejecting end 701 of the pressing tube 70, and this makes an internal of the inner barrel 91 communicate with an internal of the pressing tube 70. The inner barrel 91 is made of metal.
The two half-shells 92 cover a back half segment of the inner barrel 91, the adjusting unit 80, and the pressing tube 70. Each one of the two half-shells 92 has a positioning groove 921, a communicating groove 922, and an adjusting groove 923. The positioning groove 921 is transversely formed through a middle section of the two half-shells 92, and the rotating disk of the control knob 82 is positioned in the two positioning grooves 921 of the two half-shells 92. The communicating groove 922 is formed in the half-shell 92 and communicates with the positioning groove 921, and the adjusting block 811 of the force ring 81 and the screw rod of the control knob 82 are positioned in the two communicating grooves 922 of the two half-shells 92.
The adjusting groove 923 is concaved inward from an upper half segment of the half-shell 92 and communicates with a corresponding communicating groove 922. The adjusting groove 923 is formed on the half-shell 92 above the positioning groove 921 and is arc-shaped, and the force ring 81 of the adjusting unit 80 is located in the two adjusting grooves 923 of the two half-shells 92. The outer barrel 93 is mounted around the two half-shells 92, and the inner barrel 91 is located in the outer barrel 93.
With reference to
However, since a surrounding wall of the pressing tube 70 is solid, when the pressing tube 70 is forced by the force ring 81, a deformation of the abutting portion 72 would affect the pressing block 71 directly, and the pressing block 71 deforms downward. So the pellet 60 is pressed by the pressing block 71, and a rigid contact is formed between the pressing block 71 and the pellet 60. Because the pressing block 71 is made of rubber, in the procedure of ejecting the pellet 60, the pressing block 71 is easily to be damaged due to the friction between the pellet 60 and the pressing block 71. And this would influence the accuracy of the pellet 60 and decrease the ejecting length of the pellet 60, so the conventional rotation-force adjusting device for a toy gun should be improved.
To overcome the shortcomings of the conventional rotation-force adjusting device for a toy gun, the present invention provides a rotation-force adjusting device for a toy gun to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a rotation-force adjusting device for a toy gun which may prevent a pellet rubbing against and damaging a pressing block of the rotation-force adjusting device.
The rotation-force adjusting device for a toy gun has a pressing tube, an adjusting unit, and a gun body. The pressing tube has a pressing block, a cushion hole, and an abutting portion. The pressing block is formed on and protrudes radially inward from a top portion of the inner surface of the pressing tube. The cushion hole is formed through a top portion of the pressing tube. The abutting portion is formed at the top portion of the pressing tube and is formed on the pressing tube above the cushion hole. The adjusting unit is mounted around the pressing tube and has a force ring and a control knob. The force ring is mounted around the pressing tube, and the control knob is mounted through the force ring. The gun body has an inner barrel mounted through the pressing tube.
Other objects, advantages, and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawing.
With reference to
With reference to
With reference to
With reference to
With reference to
The positioning groove 321 is formed in the inner surface of the half-shell 32. The positioning groove 321 is covered by the rotating disk 221 of the control knob 22, and this makes the rotating disk 221 of the control knob 22 positioned in the two positioning grooves 321 of the two half-shells 32. The communicating groove 322 is formed in a corresponding half-shell 32 and communicates with the corresponding positioning groove 321. The two communicating grooves 322 are disposed around the screw rod 222 of the control knob 22 and the adjusting block 211 of the force ring 21.
The adjusting groove 323 is formed through an upper segment of the half-shell 32, communicates with the communicating groove 322, and is formed through the half-shell 32 above the positioning groove 321. The adjusting groove 323 is arc-shaped, and the force ring 21 of the adjusting unit 20 is located in the two adjusting grooves 323 of the two half-shells 32. The locating hole 324 is formed through the corresponding half-shell 32 and is adjacent to the adjusting groove 323, the two positioning protrusions 16 are respectively located in the two locating holes 324, and this makes the pressing tube 10 engage with the two half-shells 32. The outer barrel 33 is mounted around the two half-shells 32, and the inner barrel 31 is located in the outer barrel 33.
In use, with reference to
When the pellet 50 passes through the pressing block 11 which moves downward and abuts the pressing block 11, the pellet 50 would be pressed by the pressing block 11 and co-operated with an ejecting force, and the pellet 50 may rotate. When the pellet 50 passes through a middle segment of the pressing block 11, because of the cushion hole 12, the pellet 50 and the pressing block 11 form a non-rigid contact, and a cushion region is formed between the pellet 50 and the pressing block 11. The pellet is applied with a rotation force without over-rubbing the pressing block 11, thereby avoiding damaging the pressing block 11.
Furthermore, the two limiting grooves 13 are perpendicular to the axis of the pressing tube 10, and the forcing region of the force ring 21 would be limited between the two limiting grooves 13, and this can prevent the force of the force ring 21 transmitting out of the two limiting grooves 13 of the pressing tube 10. As for the conventional rotation-force adjusting device for a toy gun, because a surrounding wall of the pressing tube 70 is solid, the abutting portion 72 abuts the pressing block 71 in a rigid contact. The pressing block 70 presses the pellet 60 directly, the pressing block 71 rubs against the pellet 60 directly, and the pressing block 71 is damaged such that the accuracy of the pellet 60 is affected. The design of the cushion hole 12 of the present invention makes the pellet 50 and the pressing block 11 form a non-rigid contact. The applied force between the pressing block 11 and the pellet 50 decreases, so the pressing block 11 would not over-rub the pellet 50. Then, the shooting length and accuracy of the pellet 50 may be improved
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
104212065 U | Jul 2015 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2182369 | Barron | Dec 1939 | A |
5791326 | Brown | Aug 1998 | A |
8333181 | Rice | Dec 2012 | B1 |
8418682 | Halmone | Apr 2013 | B2 |
8714146 | Hu | May 2014 | B2 |
9103624 | Kung | Aug 2015 | B1 |
20120227221 | Whitaker | Sep 2012 | A1 |
20120272941 | Hu | Nov 2012 | A1 |
20150059721 | Huang | Mar 2015 | A1 |