Rotation prevention structure of a valve lifter for an internal combustion engine

Abstract
Several embodiments of anti-rotation devices for precluding rotation of the valve actuating lifters or tappet bodies caused by the action of the cam lobe on the engaged surface of the lifter. In each embodiment, the anti-rotation function is achieved without adding to the reciprocating masses of the engine.
Description




BACKGROUND OF INVENTION




This invention relates to a valve actuating structure for operating poppet valves and more particularly to the rotation prevention structure of a valve lifter for an internal combustion engine.




A wide variety of reciprocating machines such an internal combustion engines employ poppet valves that are operated through camshafts via followers in the form of valve lifters such as thimble tappets. These valve lifters are supported for reciprocation in bores formed in an engine body and are operatively interposed between the cam lobes the valve stems.




Conventionally, the valve lifters or tappets are formed as cylindrical bodies having an upper surface engaged by the cam and which has a shape of the arc of a circle when viewed in the direction of the camshaft axis. In a perpendicular plane, the upper surface has a generally linear configuration. Thus, the top surface of the valve lifter engaged by the cam lobe is in the form of a section of a cylinder. However, because of this construction, there is likelihood that the operation of the lifter by the rotation of the cam can also cause rotary motion of the lifter about its reciprocal axis. This can result in undue wear of the lifter and/or receiving body of the engine, which can be detrimental to optimum performance.




It is, therefore, a principal object to this invention to provide an improved structure that serves the function of preventing rotation of the valve lifter upon operation of the valve and due to rotation of the actuating cam.




It is important when considering the valve timing of an engine to minimize the reciprocating masses. As the reciprocating masses increase, the inertia on the entire system increases resulting in the possibility of valve flow and decrease performance. It is, therefore, a still further object to this invention to provide an improved arrangement for precluding rotation of the valve lifter upon its actuation and which is done in a way so as to avoid any increase in the mass of the valve lifter.




SUMMARY OF INVENTION




This invention is adapted to be embodied in a valve lifter arrangement for operating a poppet valve from the rotating can of a camshaft. The construction comprises an engine body defining a cylindrical bore. A valve tappet having a generally cylindrical body portion is supported for reciprocation in the cylindrical bore. The valve tappet has a head portion adapted to be operated by the cam. In accordance with the invention interengaging portions carried by the valve tappet and the engine body permit reciprocation of the valve tappet in the engine body but prevent rotation thereof.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a perspective view of an internal combustion engine showing the valve actuating mechanism therefore in solid lines with the outline of the engine being shown in solid lines, but broken away to show the valve operating mechanism.





FIG. 2

is an enlarged cross sectional view taken through the axis of reciprocation of the one of the engine valves and is taken along the line


2





2


of FIG.


3


.





FIG. 3

is a top plan view, looking in a direction perpendicular to the direction of

FIG. 2

but with the camshaft removed so as to more clearly show the tappet bodies and the anti-rotation prevention mechanism therefore.





FIG. 4

is an enlarged cross sectional view taken along the line


4





4


of

FIG. 3

, showing the valves in their closed positions.





FIG. 5

is a view, in part similar to

FIG. 4

, but showing the actuated valves in their fully opened positions.





FIG. 6

is a perspective view showing one of the valve mechanism and the associated anti-rotation device when the valve is closed, with remaining components of the engine being shown in phantom.





FIG. 7

is a cross sectional view, in part similar to

FIG. 4

, but shows another embodiment of the invention, with the valves in their closed positions.





FIG. 8

is a cross sectional view, in part similar to

FIG. 5

, but showing the valves of this embodiments in their fully opened positions.





FIG. 9

is a top plan view, in part similar to

FIG. 3

, and shows a still further embodiment of the invention.





FIG. 10

is a cross sectional view taken along the line


10





10


of FIG.


9


and with the valve fully opened.











DETAILED DESCRIPTION




Referring now in detail to the drawings and initially primarily to

FIG. 1

, an internal combustion engine constructed in accordance with an embodiment of the invention is shown in part and is identified generally by the reference numeral


11


. The engine


11


is comprised of a main engine body that includes a cylinder head assembly


12


, a cylinder block assembly


13


and a crankcase forming member


14


that are connected together in any suitable manner.




The cylinder block


13


forms a plurality of cylinder bores


15


, which are disposed, in the illustrated embodiment, in an in-line arrangement. Although such an arrangement can be used, the invention can be employed with engines having other cylinder configurations such as V-type or opposed engines, as will become readily apparent to those skilled in the art.




Since the invention deals primarily with the valve actuating mechanism for the engine


11


, only those components associated with it are shown in detail in this perspective view. These include pistons


16


, only one of which is shown, which reciprocates in the cylinder bores


15


and are connected to drive a crankshaft


17


by means of connecting rods


18


in any well known manner.




In the illustrated embodiment, the engine


11


is of the four valve per cylinder type and each cylinder is provided with a pair of intake valves


19


disposed on one side of a plane containing the cylinder bore axis and a pair of exhaust valves


21


formed on the other side of this plane for each of the cylinder bores


15


. The intake and exhaust valves


19


and


21


are of the poppet valve type and are supported for reciprocation in a manner, which will be described later by reference to the remaining figures.




In the illustrated embodiment, the valves


19


and


21


are operated by means of a pair of overhead camshafts consisting of an intake camshaft


22


, having intake cam lobes


23


, and an exhaust camshaft


24


having exhaust cam lobes


25


. The camshafts


22


and


24


are rotatably journalled in a manner, which will be described. Each cam lobe


23


and


25


cooperates with a respective thimble type tappet


26


, which is supported for reciprocation in a manner, which will also be described later by reference to the remaining figures.




In the illustrated embodiment, the intake and exhaust camshafts


22


and


24


are driven at one end of the engine


11


by means of a timing drive which, in the illustrated embodiment, comprises a toothed timing belt


27


that cooperates directly with a sprocket


28


that is affixed to the exhaust camshaft


24


and which drives the exhaust camshaft at one-half crankshaft speed from a driving sprocket


29


fixed to this end of the crankshaft


17


.




On the other hand, the intake camshaft


22


is driven by a timing sprocket


31


, which drives the intake camshaft


22


through a variable valve timing mechanism


32


. In this regard, it should be noted that the described valve timing drive is only typical of one of many, which can be utilized in conjunction with the invention. For that reason, a detailed description of the camshaft drive mechanism is not believed to be necessary to permit those skilled in the art to practice the invention. Those skilled in the art can readily apply the invention to any known type of valve drive and valve actuating mechanism that includes cam lobes, which cam lobes operate thimble tappets either directly or through an intermediary method which may be likely to cause rotation of the thimble tappets in their supporting engine structure.




Referring now in detail primarily to

FIGS. 2 through 5

, a first embodiment of the invention is shown in detail. In this embodiment, the relationship of one of the thimble tappets


26


to a pair of the exhaust valves


21


is described. It is to be understood that the same type of structure is utilized in conjunction with the intake camshaft


22


.




Each of the valves, such as the exhaust valves


21


, is of the poppet type and includes a valve head


33


which valves a valve seat


34


formed in an appropriate manner in the respective side of the cylinder head. A stem


35


of the valve


21


is slidably supported in directly in the cylinder head member


12


or in a valve guide


36


which is cast, pressed or otherwise positioned therein.




A keeper retainer assembly


37


is fixed to the upper end of the valve stems


35


and is engaged by one end of a valve return spring such as a coil compression spring


38


. The other end of the valve spring


38


is engaged with the cylinder head member


12


in a well known manner so as to urge the respective valve


21


to its closed position.




An adjusting shim


39


is interposed between the tip of the valve stems


35


and an undersurface of the head


41


of the thimble tappet


26


. The tapped head


41


is formed at the upper end of a cylindrical body portion


42


and which is reciprocally supported in a bore


43


formed in the cylinder head member


12


.




As is typical in this practice, in a plane looking perpendicular to the cylinder bore axis, the tappet head portion


41


is formed with an arcuate curvature


44


that has a radius R (FIG.


2


). Viewed in a perpendicular direction (FIG.


4


), it will be seen that this curved surface


44


appears as a straight line.




The structure as thus far described may be considered to be conventional and as such, without more, could be subject to the problem of rotation of the thimble tappets


26


in their supporting cylinder head bores


23


which could cause wear of one or both components.




In accordance with the invention, therefore, and in this embodiment, and anti-rotation pin, indicated generally by the reference numeral


45


is provided. This anti-rotation construction pin


45


is, in this embodiment, comprised of a single anti-rotation pin


45


mounted in the cylinder head member


12


between the each of the pairs of tappet bodies associated with both the intake and exhaust valves of each cylinder.




This anti-rotation pin


45


is comprised of a larger diameter headed portion


46


that is engaged in a pair of machined semi-cylindrical recesses


47


formed in each of the adjacent portions of the tappet bodies


26


. A smaller diameter portion


48


extends upwardly in the area between the tappet bodies and is engaged at its upper end by a bearing portion


49


of the respective camshaft so as to retain it in the cylinder head


12


in the position shown in

FIGS. 4 through 6

.




The anti-rotation recesses


47


have an axial length such that the large diameter anti-rotation portion


46


of the pin


45


can traverse the length of the recesses


47


when the valves move between their fully closed positions as shown in FIG.


4


and their fully opened positions as shown in FIG.


5


. Thus, this structure, which precludes rotation, is not provided by any added material on the tappet bodies


26


and, in fact, they are provided with a reduced weight of reciprocation because of the formation of the recesses


46


therein. Also, because of the fact that the anti-rotation pins


45


are held in place by the camshaft bearing portion


49


no significant assembly problems are presented.




The cylinder head member


12


is formed with a bore


51


that will clear the smaller diameter portions


48


as well as the headed portions


46


of the pins


45


so as to facilitate assembly.





FIGS. 7 and 8

show another embodiment of the invention. This embodiment differs from that already described only in the construction and mounting of the anti-rotation locking pin. Therefore only two figures corresponding to

FIGS. 4 and 5

of the previously described embodiment are believed to be sufficient to permit those skilled in the art to practice this embodiment. In these figures any components that are the same or substantially the same as the components already described have been identified by the same reference numerals. These components will be discussed further only in so far as is necessary to understand the construction and operation of this embodiment.




In this embodiment, rather than relying on the camshaft bearing surface


49


for holding the any-rotation device in position, a screw threaded connection is utilized between the anti-rotation locking pin, indicated generally by the reference numeral


71


in these figures. This locking pin


71


has a socket headed portion


72


which is sized so as to fit within the cylinder head bore


51


and permitted to be screwed into a tapped opening


73


formed in the cylinder head assembly


12


. A threaded portion


74


is formed below the socket head


72


for permitting this connection.




The socket head


72


is sized so as to fit into the recesses


46


of the tappet bodies


26


. As may be seen in

FIG. 8

, the head


72


is mounted in the cylinder head assembly


12


in a position so that it will cooperate with the tappet slots


47


through the full length of movement of the valves


21


between their opened and closed positions shown respectively in

FIGS. 8 and 7

.




In all other regards, this embodiment is the same, as that previously described and further description of it is not believed to be necessary to permit those skilled in the art to practice the invention.




In the embodiments as already described, the construction has been employed with four valve per cylinder engines and one anti-rotation pin either


45


,


71


has been employed between two paired valves serving a single cylinder. Although this has the advantage of simplicity, it provides some lack of freedom in where the anti-rotation device may be located around the body of the tappet


26


.





FIGS. 9 and 10

show another construction that utilizes a locking pin that is threaded into the cylinder head, like that of the embodiment of

FIGS. 7 and 8

. Therefore, the locking pin and its parts in this embodiment are identified by the same reference numerals. In addition, the same references numerals have been utilized to identify the components already described and they will not be described again.




As may be seen, this embodiment shows the positioning of the anti-rotation pin


71


at a side of the tappet


26


that does not lie on the axis of rotation of the camshaft. Of course, other circumferential locations can be employed as should be readily apparent to those skilled in the art.




Thus, from the foregoing description it should be readily apparent that the described constructions provide a very good and simple arrangement for preventing rotation of the valve actuating tappets or lifters around their reciprocal axis due to the action of the cam lobes against the tappet faces. Of course, the foregoing description is that of preferred embodiments of the invention and various changes and modifications may be made without departing from the spirit and scope of the invention, as defined by the appended claims.



Claims
  • 1. A valve lifter arrangement for operating a poppet valve from the rotating cam of a cam shaft comprising an engine body defining a cylindrical bore, a valve tappet having a generally cylindrical body portion supported for reciprocation in said cylindrical bore and a head portion adapted to be operated by the cam, an axially extending cylindrical groove formed in a side of said tappet body and a pin having an axis extending parallel to said cylindrical bore with a larger diameter portion complimentary to said cylindrical groove and received therein and a smaller diameter portion affixed relative to said engine body to permit reciprocation of said valve tappet in said engine body and prevent rotation thereof.
  • 2. A valve lifter arrangement as set forth in claim 1 wherein the pin is detachably carried by the engine body.
  • 3. A valve lifter arrangement as set forth in claim 2 further including an arrangement for axially restraining the pin in the engine body.
  • 4. A valve lifter arrangement as set forth in claim 3 wherein the cylindrical pin is axially restrained in the engine body by a threaded connection.
  • 5. A valve lifter arrangement as set forth in claim 1 wherein there are two adjacent valve lifters each operating a respective poppet valve and supported in a respective engine body cylindrical bore, each of said valve lifters having facing complimentary receiving grooves cooperating with opposite sides of a common pin.
  • 6. A valve lifter arrangement as set forth in claim 5 wherein the pin is detachably carried by the engine body.
  • 7. A valve lifter arrangement as set forth in claim 6 further including an arrangement for axially restraining the pin in the engine body.
  • 8. A valve lifter arrangement as set forth in claim 7 wherein the pin is axially restrained in the engine body by a bearing surface of the camshaft positioned between a pair of cam lobes, each of which cooperates with a respective valve lifter.
  • 9. A valve lifter arrangement as set forth in claim 7 wherein the cylindrical pin is axially restrained in the engine body by a threaded connection.
  • 10. A valve lifter arrangement for operating a poppet valve from the rotating cam of a camshaft comprising an engine body defining a cylindrical bore, a valve tappet having a generally cylindrical body portion supported for reciprocation in said cylindrical bore and a head portion adapted to be operated by the cam, interengaging portions comprising a cylindrical projection comprising a cylindrical pin having an axis parallel to the axis of said engine body cylindrical bore detacheably carried by said engine body and a complimentary receiving groove carried by said valve tappet to permit reciprocation of said valve tappet in said engine body and prevent rotation thereof said cylindrical pin being axially restrained in said engine body by a bearing surface of said camshaft.
  • 11. A valve lifter arrangement as set forth in claim 10 wherein the cylindrical pin has a smaller diameter portion extending in a spaced radial position from the valve tappet head portion and a larger diameter portion received in the complimentary receiving groove.
  • 12. A valve lifter arrangement as set forth in claim 11 wherein the cylindrical projection is detachably carried by the engine body.
  • 13. A valve lifter arrangement as set forth in claim 10 wherein the cylindrical pin is axially restrained in the engine body by a bearing surface of the camshaft.
Priority Claims (1)
Number Date Country Kind
2001-211759 Jul 2001 JP
US Referenced Citations (7)
Number Name Date Kind
3139076 Flaherty Jun 1964 A
4448155 Hillebrand et al. May 1984 A
5178107 Morel et al. Jan 1993 A
5454353 Elendt et al. Oct 1995 A
5651335 Elendt et al. Jul 1997 A
6244229 Nakano et al. Jun 2001 B1
6427652 Faria et al. Aug 2002 B2
Foreign Referenced Citations (2)
Number Date Country
41 15 670 Nov 1992 DE
674732 Jul 1995 GB
Non-Patent Literature Citations (1)
Entry
European Search Report Dated May 30, 2003.