The described embodiments relate generally to electronic devices, and more particularly to a crown for a wearable electronic device.
Electronic devices frequently use physical input devices to facilitate user interaction. For example, buttons, keys, dials, and the like can be physically manipulated by users to control operations of the device. Physical input devices may use various types of sensing mechanisms to translate the physical manipulation to signals usable by the electronic device. For example, buttons and keys may use collapsible dome switches to detect presses, while dials and other rotating input devices may use encoders or resolvers to detect rotational movements.
An electronic watch may include a housing and a crown configured to receive a rotational input. The crown may include a knob external to the housing, a rotor coupled to the knob and configured to rotate in response to the rotational input. The rotor may define a recess extending about a circumference of the rotor. The crown may include a coating positioned in the recess and configured to reflect at least a portion of light incident on the coating. The electronic watch may further include an optical sensing system configured to detect the rotational input using the reflected portion of the light.
The crown may further include a shaft coupling the knob to the rotor, the coating may have a substantially uniform thickness, and the coating may define an exterior surface that is substantially flush with a circumferential surface of the rotor. The recess may have a substantially uniform depth greater than about 20 microns. The recess may have a substantially uniform depth greater than about 50 microns. The coating may include titanium dioxide. The coating may define a cylindrical outer surface, and the coating may have a substantially uniform reflectance along its cylindrical outer surface.
The optical sensing system may include a laser emitter configured to direct a laser beam onto the coating, the reflected portion of the light may be a reflected portion of the laser beam, and the optical sensing system may determine a speed and a direction of the rotational input using self-mixing laser interferometry.
The crown may be further configured to receive a translational input, and the rotor may translate from a first position to a second position in response to the translational input. The optical sensing system may be configured to direct a light beam onto the coating. In the first position, the light beam directed onto the coating may be incident on a first location of the coating, and in the second position, the light beam directed onto the coating may be incident on a second location of the coating.
A wearable electronic device may include a housing having a side wall and an opening in the side wall, and a crown configured to receive a rotational input. The crown may include a knob positioned along a side of the housing, a shaft assembly coupled to the knob and extending through the opening in the side wall, and a coating positioned in a recess defined along a circumferential surface of the shaft assembly and configured to reflect light. The wearable electronic device may further include an optical sensing system configured to receive the light reflected from the coating and detect the rotational input using the light reflected from the coating. The recess may have a substantially uniform depth. An exterior surface of the coating may be substantially flush with the circumferential surface of the shaft assembly. The crown may be further configured to receive a translational input and the shaft assembly may be configured to actuate a switch in response to the translational input.
The optical sensing system may be further configured to direct light onto the coating and produce a signal corresponding to a rotational motion of the coating, the signal based at least in part on an interference between the light directed onto the coating and the light reflected from the coating. A beam axis of the light directed onto the coating may be oblique to the coating.
An electronic watch may include a housing and a crown configured to receive a rotational input. The crown may include a rotor configured to rotate in response to the rotational input and defining a recess extending about a circumference of the rotor, and a reflective material positioned in the recess. The electronic watch may further include an optical sensing system configured to direct light onto the reflective material, receive a reflected portion of the light, the reflected portion of the light reflected from the reflective material, and determine a characteristic of the rotational input based on the reflected portion of the light.
The recess may be defined by a first side surface, a second side surface opposite the first side surface, and a bottom surface. The first side surface and the second side surface may be substantially perpendicular to the bottom surface.
The reflective material may include titanium dioxide and a binder material. The light directed onto the reflective material may include a laser beam, the reflected portion of the light may be a reflected portion of the laser beam, and the optical sensing system may include a laser module configured to emit the laser beam and receive the reflected portion of the laser beam.
The laser module may detect a difference in frequency between the emitted laser beam and the reflected portion of the laser beam, and the characteristic of the rotational input may be based at least in part on the difference in the frequency.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following description is not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
The embodiments herein are generally directed to a crown of a wearable electronic device, such as an electronic watch (also referred to as a “smart watch” or simply a “watch”), and more particularly to a crown that can be manipulated by a user to provide inputs to the device. For example, the crown may accept rotational inputs, by which a user spins, twists, turns, or otherwise rotates the crown about a rotation axis. Rotational inputs may be used to control operations of the device. For example, a rotational input may modify a graphical display of the device in accordance with a direction of rotation of the crown, such as to scroll through lists, select or move graphical objects, move a cursor among objects on a display, or the like. The crown may also accept translational inputs, by which a user pushes or presses on the end of the crown (e.g., along, or parallel to, the rotation axis). Translational inputs may be used to indicate a selection of an item displayed on a display, change a display mode (e.g., to activate a display), change between or among graphical interface modes, or the like. In some cases, a crown may also act as a contact point for a sensor, such as a biometric sensor, of the device. For example, a smart watch may include any or all of a heart rate sensor, an electrocardiograph sensor, a thermometer, a photoplethysmograph sensor, a fingerprint sensor, or the like, all of which are examples of biometric sensors that measure or detect some aspect of a user's body. Such sensors may require direct contact with the user's body, such as via a finger. Accordingly, the crown may include an external component, such as a window, electrode, or the like, that a user may touch in order to allow the biometric sensor to take a reading or measurement. In some cases, electrical signals may be transmitted through the crown to internal sensors via a conductive path defined by and/or through the crown.
In order to respond to a rotational input applied to a crown, a sensing system is used to detect the speed and/or direction of the crown. Described herein are optical sensing systems that can detect the speed and direction of a crown rotation using light reflected from a rotating surface of the crown. For example, an optical sensing system may emit light (e.g., a laser beam) onto a rotating surface of the crown, and receive a portion of the light that is reflected from the rotating surface. Based at least in part on the reflected light, the optical sensing system can determine one or more characteristics of the crown rotation.
In some cases, the optical reflectance of the reflective surface impacts the design and/or operation of the optical sensing system. For example, a greater optical reflectance may result in a greater proportion of the emitted light being reflected and received by the optical sensing system, which can improve operational parameters of the optical sensing system, such as signal-to-noise ratio, power efficiency, and the like. Accordingly, as described herein, reflective coatings, such as a white paint pigmented with titanium dioxide or other reflective material, may be applied to a rotating structure of a crown in order to achieve a target optical reflectance for the optical rotation sensing system. More particularly, the reflective coatings may be configured to reflect at least a portion of light incident thereon towards an optical sensing system, which uses the reflected light to determine characteristics of the rotation of the crown.
Additionally, the uniformity (or lack thereof) of the optical reflectance of the reflective surface can impact the operation of the optical sensing system. For example, a surface with greater variation in reflectance (e.g., in which the optical reflectance of the reflective surface is different in different locations) may decrease the accuracy and/or precision of the optical sensor. Such effects may result in a poor user experience and/or may cause the optical sensors to fail to achieve a performance criteria. Accordingly, as described herein, a rotating component of a crown may be configured with physical features that produce a reflective surface with a high degree of optical (e.g., reflective) uniformity.
For example, a shaft or other rotating component of a crown may include a recess that extends about a circumference of the shaft and in which a reflective material is located or deposited. The recess may be configured to result in a reflective coating, formed from the reflective material, having a substantially uniform thickness and a substantially uniform roundness (among other tight dimensional tolerances), thus facilitating accurate and precise rotation measurements. In particular, a coating, such as a paint, may tend to form a curved or otherwise irregular exterior surface when applied to a surface, such as the surface of a shaft. In some cases, a curved surface corresponds to or results in a nonuniform thickness of the coating, in which the coating is thicker towards the center or middle of the coating, and thinner at the edges. This nonuniformity may negatively impact rotation sensing functionality due to the difference in reflectance (caused by differing coating thickness) at different locations on the coating. By forming a recess, the material of the coating may be constrained in such a manner that the thickness of the coating is substantially uniform and the surface of the coating is substantially flat, resulting in greater uniformity in reflectance across the entire coating. Recesses may be formed by machining a recess in a surface of a smooth cylindrical shaft surface, or by forming ridges or flanges on a shaft to define a recess therebetween. Other techniques for forming or defining a recess are also described herein.
Additionally, manufacturing and assembly efficiency of rotation sensing systems may be improved by achieving a high degree of dimensional (and thus reflective) uniformity. For example, greater reflective uniformity of the reflective surface may allow the optical emitter and the reflective surface to accommodate larger positioning tolerances (e.g., due to manufacturing and/or assembly tolerances) without negatively affecting the performance of the optical sensor.
The device 100 includes a housing 102 and a band 104 coupled to the housing. The housing 102 may at least partially define an internal volume in which components of the device 100 may be positioned. The housing 102 may also define one or more exterior surfaces of the device, such as all or a portion of one or more side surfaces, a rear surface, a front surface, and the like. The housing 102 may be formed of any suitable material, such as metal (e.g., aluminum, steel, titanium, or the like), ceramic, polymer, glass, or the like. The band 104 may attach the device 100 to a user, such as to the user's arm or wrist. The device 100 may include battery charging components within the device 100, which may receive power, charge a battery of the device 100, and/or provide direct power to operate the device 100 regardless of the battery's state of charge (e.g., bypassing the battery of the device 100). The device 100 may include a magnet, such as a permanent magnet, that magnetically couples to a magnet (e.g., a permanent magnet, electromagnet) or magnetic material (e.g., a ferromagnetic material such as iron, steel, or the like) in a charging dock (e.g., to facilitate wireless charging of the device 100).
The device 100 also includes a transparent cover 108 coupled to the housing 102. The cover 108 may define a front face of the device 100. For example, in some cases, the cover 108 defines substantially the entire front face and/or front surface of the device. The cover 108 may also define an input surface of the device 100. For example, as described herein, the device 100 may include touch and/or force sensors that detect inputs applied to the cover 108. The cover may be formed from or include glass, sapphire, a polymer, a dielectric, or any other suitable material.
The cover 108 may overlie at least part of a display 109 that is positioned at least partially within the internal volume of the housing 102. The display 109 may define an output region in which graphical outputs are displayed. Graphical outputs may include graphical user interfaces, user interface elements (e.g., buttons, sliders, etc.), text, lists, photographs, videos, or the like. The display 109 may include a liquid crystal display (LCD), an organic light emitting diode display (OLED), or any other suitable components or display technologies.
The display 109 may include or be associated with touch sensors and/or force sensors that extend along the output region of the display and which may use any suitable sensing elements and/or sensing systems and/or techniques. Using touch sensors, the device 100 may detect touch inputs applied to the cover 108, including detecting locations of touch inputs, motions of touch inputs (e.g., the speed, direction, or other parameters of a gesture applied to the cover 108), or the like. Using force sensors, the device 100 may detect amounts or magnitudes of force associated with touch events applied to the cover 108. The touch and/or force sensors may detect various types of user inputs to control or modify the operation of the device, including taps, swipes, multi-finger inputs, single- or multi-finger touch gestures, presses, and the like. Touch and/or force sensors usable with wearable electronic devices, such as the device 100, are described herein with respect to
The device 100 also includes a crown 112 having a knob, external portion, or component(s) or feature(s) positioned along a side wall 101 of the housing 102. At least a portion of the crown 112 (e.g., a knob 208,
The crown 112 may facilitate a variety of potential user interactions. For example, the crown 112 may be rotated by a user (e.g., the crown may receive rotational inputs). The arrow 115 in
The crown 112 may also include or define an input feature 116 that facilitates input to biometric sensing circuitry or other sensing circuitry within the device 100. The input feature 116 may be a conductive surface that is conductively coupled, via one or more components of the device 100, to the biometric sensing circuitry. The input feature 116 may be a conductive member (e.g., a cap or disk) that is part of the crown 112. In some cases, the input feature 116 and/or the component(s) that define the input feature 116 are electrically isolated from other components of the device 100. For example, the input feature 116 may be electrically isolated from the housing 102. In this way, the conductive path from the input feature 116 to the biometric sensing circuitry may be isolated from other components that may otherwise reduce the effectiveness of the biometric sensor. In order to provide an input to the biometric sensor, a user may place a finger or other body part on the input feature 116. The biometric sensor may be configured to take a reading or measurement in response to detecting that the user has placed a finger or other body part on the input feature 116. In some cases, the biometric sensor may only take a reading or measurement when a sensing function is separately initiated by a user (e.g., by activating the function via a graphical user interface). In other cases, a reading or measurement is taken any time the user contacts the input feature 116 (e.g., to provide a rotational or translational input to the crown 112). The user may have full control over when the biometric sensor takes measurements or readings and may even have the option to turn off the biometric sensing functionality entirely.
The device 100 may also include one or more haptic actuators that are configured to produce a tactile output through the crown 112. For example, the haptic actuator may be coupled to the crown 112 and may be configured to impart a force to the crown 112. The force may cause the crown 112 to move (e.g., to oscillate or vibrate translationally and/or rotationally, or to otherwise move to produce a tactile output), which may be detectable by a user when the user is contacting the crown 112. The haptic actuator may produce tactile output by moving the crown 112 in any suitable way. For example, the crown 112 (or a component thereof) may be rotated (e.g., rotated in a single direction, rotationally oscillated, or the like), translated (e.g., moved along a single axis), or pivoted (e.g., rocked about a pivot point). In other cases, the haptic actuator may produce tactile outputs using other techniques, such as by imparting a force to the housing 102 (e.g., to produce an oscillation, vibration, impulse, or other motion), which may be perceptible to a user through the crown 112 and/or through other surfaces of the device 100, such as the cover 108, the housing 102, or the like. Any suitable type of haptic actuator and/or technique for producing tactile output may be used to produce these or other types of tactile outputs, including electrostatics, piezoelectric actuators, oscillating or rotating masses, ultrasonic actuators, reluctance force actuators, voice coil motors, Lorentz force actuators, or the like.
Tactile outputs may be used for various purposes. For example, tactile outputs may be produced when a user presses the crown 112 (e.g., applies an axial force to the crown 112) to indicate that the device 100 has registered the press as an input to the device 100. As another example, tactile outputs may be used to provide feedback when the device 100 detects a rotation of the crown 112 or a gesture being applied to the crown 112. For example, a tactile output may produce a repetitive “click” sensation as the user rotates the crown 112 or applies a gesture to the crown 112. Tactile outputs may be used for other purposes as well.
The device 100 may also include other inputs, switches, buttons, or the like. For example, the device 100 includes a button 110. The button 110 may be a movable button (as depicted) or a touch-sensitive region of the housing 102. The button 110 may control various aspects of the device 100. For example, the button 110 may be used to select icons, items, or other objects displayed on the display 109, to activate or deactivate functions (e.g., to silence an alarm or alert), or the like.
The rear cover 118 may define a plurality of windows to allow light to pass through the rear cover 118 to and from sensor components within the device 100. For example, the rear cover 118 may define an emitter window 120 and a receiver window 122. While only one each of the emitter and receiver windows are shown, more emitter and/or receiver windows may be included (with corresponding additional emitters and/or receivers within the device 100). The emitter and/or receiver windows 120, 122 may be defined by the material of the rear cover 118 (e.g., they may be light-transmissive portions of the material of the rear cover 118), or they may be separate components that are positioned in holes formed in the rear cover 118. The emitter and receiver windows, and associated internal sensor components, may be used to determine biometric information of a user, such as heart rate, blood oxygen concentrations, and the like, as well as information such as a distance from the device to an object. The particular arrangement of windows in the rear cover 118 shown in
The rear cover 118 may also include one or more electrodes 124, 126. The electrodes 124, 126 may facilitate input to biometric sensing circuitry or other sensing circuitry within the device 100 (optionally in conjunction with the input feature 116). The electrodes 124, 126 may be a conductive surface that is conductively coupled, via one or more components of the device 100, to the biometric sensing circuitry.
As shown in
An optical sensing unit 210, which may be positioned on a substrate 211 (e.g., a circuit board or other suitable structure within a device), emits light (e.g., a laser beam or other light emission) that is ultimately directed onto a coating 207 (e.g., a reflective coating 207) of the shaft assembly 206. As shown in
The reflective coating 207 may be disposed in a recess 213 that is formed around a circumference of the shaft assembly 206 (e.g., along a circumferential surface of the shaft assembly 206). For example, a recess 213 may extend continuously about a circumference of the shaft assembly 206. The reflective coating 207, positioned in the recess 213, may therefore form a ring-like or cylindrical shape that is co-axial with the rotational axis of the shaft assembly 206.
The recess 213 may be configured (e.g., have a shape, size, and/or other characteristic) such that the reflective coating 207 forms a particular shape once it is positioned in the recess (and optionally cured, dried, and/or allowed to harden). For example, the recess 213 may have a uniform depth, such that the reflective coating 207 has a uniform thickness. The depth of the recess 213 and the thickness of the reflective coating 207 (which may be substantially identical) may be greater than about 20 microns, greater than about 50 microns, greater than about 60 microns, greater than about 65 microns, greater than about 75 microns, greater than about 80 microns, or another suitable size. In some cases, the depth may be between about 60 microns and about 100 microns, or between about 70 microns and about 90 microns.
The depth of the recess 213 may be uniform along multiple dimensions. For example, the depth of the recess may be uniform along the length of the shaft assembly 206 (e.g., left to right in
The uniformity of the depth and the co-axial alignment of the recess 213, as well as the low eccentricity (and/or low runout value), contribute to the accuracy and precision of the rotation sensing system, as well as providing other advantages for the device. For example, the uniform depth, co-axial alignment, and circularity result in the reflective coating 207 defining a reflective surface 209 (also referred to as an exterior surface) with little or minimal axial and/or radial runout. In some cases, a maximum cumulative deviation in the distance 201 between the reflective surface 209 and an optical sensing unit 210 over a full rotation of the crown 204 (which may correspond to a runout specification or tolerance) is less than about 100 microns. As used herein, a runout measurement, specification, or value may characterize multiple potential deviations in the dimensions of the recess 213, reflective coating 207, and/or reflective surface 209, including but not limited to eccentricity, axial alignment, depth uniformity, and circularity (e.g., the extent to which the surface follows a circular path or shape).
Variations in the distance 201 with the rotation of the crown 204 may negatively affect the accuracy and precision of the optical sensing system. For example, a change in the distance 201 while the crown is rotating at a constant speed (e.g., due to eccentricity of the reflective coating 207, waviness or other non-circularity of the surface 209, etc.) may cause the rotation sensing system to register a change in rotation speed. Such errors may negatively affect the operation of the device. For example, graphical outputs that are being manipulated in accordance with rotational speed of the crown may appear not to be accurately tracking the user's input, and may appear jittery or jumpy despite a constant rotational speed. Accordingly, the particular shape of the recess 213 and the reflective coating 207 (as well as other properties, such as material properties) may produce a reflective coating 207 having a dimensional uniformity that results in accurate and precise rotation measurements.
The particular shape and dimensions of the reflective coating 207 may also affect the reflectance of the reflective coating 207. For example, the reflectance of the reflective coating 207 may be a function of the coating thickness (e.g., a thinner coating may have lower reflectance than a thicker coating). Accordingly, deviations in the thickness of the reflective coating 207 may affect the operation of the rotation sensing system, such as by changing the signal-to-noise ratio of the signal as the crown is rotated, and/or otherwise introducing irregularities in the received light that may affect accuracy and/or precision of the sensing system. Accordingly, the uniform thickness of the reflective coating 207 may result in the reflective coating 207 having a uniform reflectance along its cylindrical outer surface.
As noted above, achieving a high degree of uniformity of the thickness of the reflective coating 207 and the distance between the reflective coating 207 and the optical sensing unit 210 along the circumference of the reflective coating 207 may contribute to the accuracy and/or precision of the rotation sensing system as the crown is rotated. Additionally, the uniformity of these parameters along an axial dimension may contribute to the accuracy and/or precision of the rotation sensing system, and may also provide other advantages as well. In particular, as noted above, the crown 204 may translate (e.g., along the rotational axis) as well as rotate about the rotational axis. In some cases, the crown may be rotated while it is being translated, and as such the accuracy and precision of the rotation sensing during translation may be affected by deviations in the thickness of the coating, the shape of the exterior surface (e.g., whether it is convex, concave, or flat in the cross-section shown in
Furthermore, the location or area of incidence of light onto the reflective surface 209 may differ between devices due to manufacturing and assembly tolerances. Accordingly, by maintaining a high degree of dimensional uniformity (e.g., uniform depth, coaxial alignment, low runout, etc.) along the axial dimension (e.g., left to right in
The surface of the reflective coating 207 may be substantially smooth. For example, in some cases, the reflective coating 207 (e.g., the outer, reflecting surface of the reflective coating 207) may have a surface roughness (e.g., Ra or RMS) between about 1 nanometer and about 125 nanometers. In some cases, the reflective coating 207 may have a surface texture. For example, in some cases, the reflective coating 207 (e.g., the outer, reflecting surface of the reflective coating 207) may have a surface roughness (e.g., Ra or RMS) between about 500 nanometers and about 1500 nanometers. The particular value of the surface roughness may be selected in order to achieve a target reflection characteristic. For example, a smoother surface may produce a more specular reflection, while a more textured surface may produce a more diffuse reflection.
As described above, an optical sensing system may use laser-based self-mixing interferometry to determine characteristics of rotational movements of a crown. For example, a laser-based system may use laser emitters, such as vertical-cavity surface-emitting lasers (VCSELs), to direct a laser beam (e.g., a beam of coherent light) onto a rotating surface of the crown (e.g., the reflective surface 209). The laser beams may be aimed at the rotating surface in such a way that some of the light from the laser beam is reflected by the reflective surface 209 of the reflective coating 207 and directed back into the laser emitter. The effect of the reflected light on the laser emitter may be used to determine the speed and direction of the rotation. More particularly, the laser beams may be aimed at the rotating surface such that the beam axis of the laser beam is incident on the surface at an oblique angle (e.g., the beam axis of the laser beam is not perpendicular to or parallel to the rotating surface at the area of incidence of the laser beam). In this configuration, the motion of the rotating surface affects the frequency of the reflected light. For example, if the rotating surface (e.g., a shaft) is rotating in one direction, the frequency of the reflected light may be higher than that of the incident light, and if the shaft is rotating in the opposite direction, the frequency of the reflected light may be lower than that of the incident light. Moreover, a greater rotational speed produces a greater shift in frequency of the reflected light. Thus, a higher speed of rotation will result in a larger frequency shift of the reflected light, as compared to a lower speed of rotation.
The difference in the frequency of the emitted light and the reflected light may have an effect on the laser emitter that can be used to detect the speed and direction of rotation of the crown. For example, when the reflected light is received by the laser emitter (while the laser emitter is also emitting light), the reflected light may cause a change in a frequency, amplitude, and/or other property(s) of the light being produced by the laser. These changes may be detected by the laser (and/or associated components and circuitry) and used to generate a signal that corresponds to a rotational motion of the crown. The signal may then be used to control functions of the device, such as to modify graphical outputs being displayed on the device.
The oblique angle of the incident beam 301 on the surface 302 results in a phenomenon that is used by the rotation sensing system to determine the speed and direction of the rotation of the shaft assembly. In particular, a portion of the incident beam 301 is reflected from the surface 302 along the same path as the incident beam 301, and ultimately reaches the laser emitter that produced the laser beam. When the incident beam 301 is incident on the surface 302, the motion of the sensing surface causes the portion of the laser beam that is reflected back along the same path as the incident beam (referred to as the reflected portion) to have a different frequency than the incident beam. For example, if the surface 302 is rotating in a first direction 304, the frequency of the reflected portion of the beam may be higher than the frequency of the incident beam 301. If the surface 302 is rotating in a second direction 306 (e.g., opposite the first direction), the frequency of the reflected portion may be lower than the frequency of the incident beam 301. Moreover, as noted above, the speed of rotation (e.g., the rotational velocity) of the sensing surface may determine the extent to which the frequency is changed. Thus, higher rates of rotation correspond to greater shifts in the frequency as compared to the frequency of the incident beam.
Once the reflected portion of the beam reaches the laser emitter, the reflected light may cause a change in a frequency, amplitude, and/or other property(s) of the light being produced by the laser emitter, or may otherwise produce an effect in the resonator of the laser emitter. These changes and/or effects may be detected by the laser (and/or associated components and circuitry) and used to generate a signal that corresponds to a rotational motion of the crown. The signal may then be used to control functions of the device, such as to modify graphical outputs being displayed on the device.
A collar 408 may be positioned in the opening 411 and attached to the housing (e.g., via adhesives, clamps, fasteners, etc.), and a shaft assembly 414 of the crown assembly 112 may extend through a hole in the collar 408. The crown assembly 112 may be retained to the collar 408, and thereby retained to the housing 102. For example, the shaft assembly 414 may include a rotor 416 that is secured to the distal end of a shaft portion 418. The rotor 416 may define a shoulder or ledge that limits the outward movement of the crown. The shoulder may contact an internal portion of the housing or other stationary component during normal operation as a dome switch and/or a spring element may bias the crown outward. In some cases, the rotor 416 does not engage the housing or otherwise structurally retain the crown assembly 112 at a position or location. For example, in some cases, the rotor 416 may not physically contact any non-rotating structures or components. As described herein, the rotor 416 may define a recess 426 in which a reflective coating 427 is positioned.
A thrust bushing 413 (e.g., a bearing or bushing formed of or including a polymer, metal, or other suitable material) may be positioned between the rotor 416 and an interior surface of the collar 408 to provide a friction surface along which the rotor 416 may slide during rotation of the crown assembly 112. A seal 410 may be provided between the collar 408 and the side wall 401 to seal the interface between the collar 408 and the side wall 401.
The crown assembly 112 may include a knob 405 (which may also be referred to as a head or dial) that is external to the housing 102 and receives a rotational input. The knob 405 may comprise a ring member 400. The ring member may be formed from metal, polymer, and/or other suitable materials, and may include knurls, grooves, or other features to provide a desired tactile feel when grasped or otherwise contacted by a user (e.g., when providing a rotational input). The crown assembly 112 may also include a molded structure 402 that couples the ring member 400 to a cap assembly 407. The molded structure 402 may structurally couple the ring member 400 to the cap assembly 407, while also electrically isolating the cap assembly 407 from the ring member 400.
The crown assembly 112 may also include a shaft assembly 414 that is coupled to and/or extends from the knob and is positioned at least partially within the housing. The shaft assembly 414 (or a component of the shaft assembly, such as the rotor 416) may define a recess 426 that extends about a circumference of the shaft assembly 414, as described herein. The recess 426 may have a substantially uniform depth along both the circumference of the shaft assembly 414 and along the rotational axis of the shaft assembly 414, as described herein. For example, the depth of the recess (and thus the thickness of the reflective coating 427) may be greater than about 20 microns, greater than about 50 microns, greater than about 60 microns, greater than about 65 microns, greater than about 75 microns, greater than about 80 microns, or another suitable depth. In some cases, the depth may be between about 60 microns and about 100 microns, or between about 70 microns and about 90 microns.
A width of the recess 426 (e.g., the distance, along the axial direction, between opposite walls of the shaft) may be between about 0.5 mm and about 1.0 mm. The width of the recess 426 may be sized relative to the spot size of the incident light and the translation distance of the crown assembly 112 such that the light is incident on the reflective coating 427 that is within the recess along at least a portion (and optionally an entire) translational stroke of the crown assembly 112. In this way, rotation can be detected even while the crown assembly 112 is being translated.
The crown assembly 112 may also include a reflective coating 427 positioned in the recess 426. As described herein, the reflective coating 427 reflects at least a portion of incident light into a component of an optical sensing system (e.g., into the same laser emitter that emitted the incident light). In some cases, the surface has substantially uniform reflection properties (e.g., bidirectional reflectance distribution function) about its circumference, such that substantially the same proportion of the laser beam is reflected into the laser emitter regardless of the rotational position of the sensing surface.
The external or outer surface of the reflective coating 427 may be cylindrical, and may define a reflective surface (e.g., the reflective surface 209,
The reflective coating 427 may include a pigment and a binder material. In some cases, the pigment includes titanium dioxide. The titanium dioxide may be rutile or anatase titanium dioxide, and may have particle sizes having a particle size between about 50 and about 650 nanometers. The binder material, or simply binder, may be a polymer such as a polyurethane acrylate, acrylic, or another suitable binder. The reflective coating 427 may be white.
The rotor 416 may be attached to the shaft portion 418, such as via a threaded connection. For example, an end of the shaft portion 418 (which may also be part of the shaft assembly 414) may define a threaded hole, and the rotor 416 may be threaded into the threaded hole. In other cases, the rotor 416 may be attached in a different manner (e.g., via adhesive, etc.).
As noted above, characteristics of a rotation of the crown assembly 112 may be detected by directing light, such as a laser beam, onto the reflective coating 427 of the crown assembly 112, and receiving or otherwise detecting a reflected portion of the laser beam.
The reflective coating 427 reflects at least a portion of the light (e.g., a laser beam) back into the optical sensing unit 428. Due at least in part to the angle at which the laser beam is incident on the reflective coating 427 (e.g., not perpendicular to the reflective coating 427 at the point where the light is incident on the sensing surface), if the crown assembly 112 is rotating when the laser beam is incident, the reflected portion of the light may have a different frequency than the emitted laser beam. The different frequency of the reflected laser beam may affect the operation of the optical sensing unit 428 in a manner that can be used to determine the speed and/or direction of rotation of the crown assembly 112, as described herein.
As noted above, the crown of a device may include or define an input feature 116 that can be used to facilitate biometric sensing functions. For example, the cap assembly 407 and rotor 416 may define a conductive path between the input feature 116 and a biometric sensor of the device, such as an ECG sensor. The cap assembly 407 may be formed of a conductive material (e.g., a metal) and may define an input feature 116 (e.g., a disk-like feature) on the axial end surface of the crown assembly 112, as well as the shaft portion 418. Further, the rotor 416 may also be formed of a conductive material (e.g., metal). Accordingly, a user can touch a finger or other body part to the input feature 116, and the biometric sensor can detect electrical characteristics of the user's body through the cap assembly 407 (and optionally the rotor 416).
The crown assembly 112 may be supported by guide members 404 and 406. The guide members 404, 406 may be bushings, bearings, or the like. The guide member 404 may be attached to the crown assembly 112 (e.g., attached to the molded member 402 or another component or portion of the crown assembly 112), or it may be attached to the collar 408. Similarly, the guide member 406 may be attached to the crown assembly 112 (e.g., attached to the shaft assembly 414), or it may be attached to the collar 408. In some cases, the guide member 404 is attached to the crown assembly 112, while the guide member 406 is attached to the collar 408. The crown assembly 112 and/or the collar 408 may slide along a surface of the guide members 404, 406 when the crown assembly 112 is rotated. In some cases, the guide members 404, 406 include one or more coatings to reduce friction and/or provide a target coefficient of friction between them and their respective contact surfaces, thereby providing a desired resistance to rotation and/or tactile feel when rotated by a user.
A seal 410 (e.g. a first seal) may be positioned between the collar 408 and the housing (e.g., the side wall 401) to inhibit ingress of water, liquids, or other contaminants into the device. The seal 410 may be an elastomeric or other compliant or compressible material and may be compressed or otherwise deformed to form intimate contact with the surfaces of the housing and the collar 408. A seal 412 (e.g., a second seal) may be positioned between the crown assembly 112 and the collar 408 to inhibit ingress of water, liquids, or other contaminants into the device. The seal 412 may be an elastomeric or other compliant or compressible material and may be compressed or otherwise deformed to form intimate contact with the surfaces of the crown assembly 112 and the collar 408. In some cases, the seal 412 is or resembles an O-ring. One or more of the surfaces in contact with the seal 412 may slide along a surface of the seal 412 to maintain the seal during rotation and/or translation of the crown assembly 112.
As noted above, the crown assembly 112 may be translatable along its axis (e.g., in response to an input force applied to the axial end of the crown assembly 112) to provide an input to the device. In order to detect the axial input, the device 100 may include a switch 422 (e.g., a dome switch) that is configured to be actuated by an end of the crown assembly 112. The switch 422 may be attached to a substrate, such as a circuit board. The switch 422 may be a dome switch, which may provide electrical switching functionality (e.g., closing a circuit upon actuation by the crown assembly 112) as well as a tactile output that may be felt or otherwise perceived by the user. For example, the user may feel a click, detent, or other sensation upon the collapse of the dome switch, thus indicating to the user that an input has been successfully provided to the device 100. In some cases, other types of switches or force sensing components may be used to detect axial inputs, which may be positioned similarly to the switch 422 in
In some cases, a friction guard 423 (or shear plate or wear plate), or a portion thereof, is positioned between the switch 422 and the rotor 416 (or between the switch 422 and a different portion of the crown assembly 112, in cases where a rotor 416 is not used). Axial forces from the crown assembly 112 may be transferred to the switch 422 through the friction guard 423. Because the friction guard 423 does not rotate, any friction due to rotation of the crown assembly 112 is applied to the friction guard 423 and not to the switch 422. This may help extend the life of the switch 422 by preventing the friction from damaging the outer surface of the switch 422, for example.
The width 502 of the recess 426 may be configured so that rotational sensing can be performed during at least a portion of translational movements of the crown assembly (and/or to accommodate manufacturing and assembly tolerances that may affect the alignment between the reflective coating 427 and an optical unit). In some cases, the crown assembly is configured to translate about 0.5 mm, and the width 502 of the recess 426 is equal to or greater than about 0.5 mm. In some cases, the width of the recess 426 is about 0.6 mm.
While the width 502 and depth 504 dimensions are described as referring to the recess 426, it will be understood that the reflective coating 427 may have the same dimensions. For example, the reflective coating 427, when in its cured, dried, hardened, and/or final state, may fill the recess 426 and the exterior or outer surface of the reflective coating 427 (e.g., the reflective surface 209,
The recess 426 may be defined by various features and/or configurations of a shaft, rotor, or other rotating component. For example, the recess 426 may be formed by machining the recess into a surface of the rotating component. In the case of a cylindrical shaft, for example, the recess 426 may be recessed relative to the cylindrical shaft surface (which may otherwise be substantially cylindrical and featureless). In some cases, the recess 426 may be defined by raised flanges, fins, or walls that extend from an otherwise cylindrical shaft surface. Regardless of the shape and/or configuration of the component in which the recess is defined, the recess may define or include a bottom surface and opposing side surfaces that contain a coating material (e.g., a paint) within the recess.
The reflective coating may be defined at least in part by the shape of the recess. In particular, the coating may be applied to the recess in a liquid or flowable state, and then allowed to cure or otherwise harden or dry in place. Thus, the coating material may flow to match the shape of the recess that the coating material contacts. Accordingly, the particular shape of the recess may be shaped in order to produce a reflective coating having a target shape.
In the foregoing examples, the reflective coating is positioned in a recess that is formed in a shaft or component of a shaft assembly. In some cases, a recess may be defined by a removable or sacrificial structure that is removed subsequent to the formation and/or application of the reflective coating.
The reflective coatings described herein may be formed at least in part using a deposition process in which a liquid or flowable material (e.g., a paint) is deposited in a recess of a shaft assembly or other rotating crown component.
The rotor 416 (and/or the nozzle) may be rotated during the material deposition process such that the material is deposited along the length of the recess 426, as indicated by arrow 804. In some cases, the rotor 416 may be rotated a single revolution while the material is being deposited, and the material may be deposited such that the last droplets do not overlap the first droplets, which may aid in producing a reflective coating having a uniform thickness. In other examples, the rotor 416 is rotated multiple times, and the material is deposited in multiple layers. As the material is deposited in a liquid or flowable form, the droplets may flow within the recess 426 to form a continuous layer or volume of material within the recess 426.
Various parameters, such as material volume deposition rate, droplet frequency, rotation speed (of the rotor 416 and/or the nozzle), and the like, may be selected so that a target volume of material is deposited in the recess 426. Accordingly, when the material is cured or otherwise hardened, the resulting reflective coating may have the target dimensions, such as the example dimensions described herein.
As described herein,
In cases where the material 900 includes water and/or solvents that evaporate or are otherwise absent from the coating when cured, hardened, or otherwise in its final state, the recess 426 may be overfilled, as shown in
The rotor 416 may optionally be rotated after the material 900 is deposited in the recess in order to inhibit drooping or flowing of the material 900 prior to curing, hardening, and/or drying, and/or to ensure a regular thickness and shape, such that the material 900 will cure, harden, and/or dry in the target, uniform shape and dimensions. Whether a rotor 416 is rotated may depend at least in part on properties of the material 900 and/or the rotor, including but not limited to viscosity, surface tension, surface energy, etc.
The material 900 may be thermally curable, irradiation (e.g., ultraviolet) curable, or both thermally and irradiation curable. In such cases, the material 900 may undergo a curing reaction, such as a polymerization reaction. In some cases, the material 900 does not undergo a curing reaction. In some cases, the material 900 may harden or dry via elimination and/or evaporation of water and/or solvents. The application and the curing, hardening, and/or drying processes may be adapted for the particular type of material used, including the particular type of solvents and/or binders used. For example, in cases where a UV curable material 900 material is used, the material 900 may be irradiated with UV radiation after the material is deposited (
The foregoing examples illustrate reflective coatings positioned on a cylindrical surface of a rotating portion of a crown. However, this is merely one example mechanism in which the reflective coating described herein may be used.
As shown in
The disk member 1014 (or any other suitable structure) defines a recess 1004, which may be similar to the recess 426 in
The optical sensing system in
As shown in
The memory 1104 may include a variety of types of non-transitory computer-readable storage media, including, for example, read access memory (RAM), read-only memory (ROM), erasable programmable memory (e.g., EPROM and EEPROM), or flash memory. The memory 1104 is configured to store computer-readable instructions, sensor values, and other persistent software elements. Computer-readable media 1106 also includes a variety of types of non-transitory computer-readable storage media including, for example, a hard-drive storage device, a solid-state storage device, a portable magnetic storage device, or other similar device. The computer-readable media 1106 may also be configured to store computer-readable instructions, sensor values, and other persistent software elements.
In this example, the processing unit 1102 is operable to read computer-readable instructions stored on the memory 1104 and/or computer-readable media 1106. The computer-readable instructions may adapt the processing unit 1102 to perform the operations or functions described herein. In particular, the processing unit 1102, the memory 1104, and/or the computer-readable media 1106 may be configured to cooperate with a sensor 1124 (e.g., a rotation sensor that senses rotation of a crown component) to control the operation of a device in response to an input applied to a crown of a device (e.g., the crown assembly 112). The computer-readable instructions may be provided as a computer-program product, software application, or the like.
As shown in
The device 1100 may also include a battery 1109 that is configured to provide electrical power to the components of the device 1100. The battery 1109 may include one or more power storage cells that are linked together to provide an internal supply of electrical power. The battery 1109 may be operatively coupled to power management circuitry that is configured to provide appropriate voltage and power levels for individual components or groups of components within the device 1100. The battery 1109, via power management circuitry, may be configured to receive power from an external source, such as an AC power outlet. The battery 1109 may store received power so that the device 1100 may operate without connection to an external power source for an extended period of time, which may range from several hours to several days.
In some embodiments, the device 1100 includes one or more input devices 1110. An input device 1110 is a device that is configured to receive user input. The one or more input devices 1110 may include, for example, a crown input system, a push button, a touch-activated button, a keyboard, a keypad, or the like (including any combination of these or other components). In some embodiments, the input device 1110 may provide a dedicated or primary function, including, for example, a power button, volume buttons, home buttons, scroll wheels, and camera buttons.
The device 1100 may also include a sensor 1124. The sensor 1124 may detect inputs provided by a user to a crown of the device (e.g., the crown assembly 112). The sensor 1124 may include sensing circuitry and other sensing components that facilitate sensing of rotational motion of a crown, as well as sensing circuitry and other sensing components (optionally including a switch) that facilitate sensing of axial motion of the crown. The sensor 1124 may include components such as an optical sensing unit (e.g., the optical sensing units 210, 428, 1008), a reflective coating (e.g., the reflective coatings 207, 427, 1002), a tactile or dome switch, or any other suitable components or sensors that may be used to provide the sensing functions described herein. The sensor 1124 may also be a biometric sensor, such as a heart rate sensor, electrocardiograph sensor, temperature sensor, or any other sensor that conductively couples to the user and/or to the external environment through a crown input system, as described herein. In cases where the sensor 1124 is a biometric sensor, it may include biometric sensing circuitry, as well as portions of a crown that conductively couple a user's body to the biometric sensing circuitry. Biometric sensing circuitry may include components such as processors, capacitors, inductors, transistors, analog-to-digital converters, or the like.
The device 1100 may also include a touch sensor 1120 that is configured to determine a location of a touch on a touch-sensitive surface of the device 1100 (e.g., an input surface defined by the portion of a cover 108 over a display 109). The touch sensor 1120 may use or include capacitive sensors, resistive sensors, surface acoustic wave sensors, piezoelectric sensors, strain gauges, or the like. In some cases, the touch sensor 1120 associated with a touch-sensitive surface of the device 1100 may include a capacitive array of electrodes or nodes that operate in accordance with a mutual-capacitance or self-capacitance scheme. The touch sensor 1120 may be integrated with one or more layers of a display stack (e.g., the display 109) to provide the touch-sensing functionality of a touchscreen. Moreover, the touch sensor 1120, or a portion thereof, may be used to sense motion of a user's finger as it slides along a surface of a crown, as described herein.
The device 1100 may also include a force sensor 1122 that is configured to receive and/or detect force inputs applied to a user input surface of the device 1100 (e.g., the display 109). The force sensor 1122 may use or include capacitive sensors, resistive sensors, surface acoustic wave sensors, piezoelectric sensors, strain gauges, or the like. In some cases, the force sensor 1122 may include or be coupled to capacitive sensing elements that facilitate the detection of changes in relative positions of the components of the force sensor (e.g., deflections caused by a force input). The force sensor 1122 may be integrated with one or more layers of a display stack (e.g., the display 109) to provide force-sensing functionality of a touchscreen.
The device 1100 may also include a communication port 1128 that is configured to transmit and/or receive signals or electrical communication from an external or separate device. The communication port 1128 may be configured to couple to an external device via a cable, adaptor, or other type of electrical connector. In some embodiments, the communication port 1128 may be used to couple the device 1100 to an accessory, including a dock or case, a stylus or other input device, smart cover, smart stand, keyboard, or other device configured to send and/or receive electrical signals.
As described above, one aspect of the present technology is the gathering and use of data from a user. The present disclosure contemplates that in some instances this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs (or other social media aliases or handles), home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to provide haptic or audiovisual outputs that are tailored to the user. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (“HIPAA”); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of determining spatial parameters, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, haptic outputs may be provided based on non-personal information data or a bare minimum amount of personal information, such as events or states at the device associated with a user, other non-personal information, or publicly available information.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings. Also, when used herein to refer to positions of components, the terms above and below, or their synonyms, do not necessarily refer to an absolute position relative to an external reference, but instead refer to the relative position of components with reference to the figures.
Number | Name | Date | Kind |
---|---|---|---|
2237860 | Bolle | Apr 1941 | A |
2288215 | Taubert et al. | Jun 1942 | A |
2497935 | Feurer | Feb 1950 | A |
2771734 | Morf | Nov 1956 | A |
2788236 | Kafowi | Apr 1957 | A |
2797592 | Marrapese | Jul 1957 | A |
3040514 | Dinstman | Jun 1962 | A |
3056030 | Kelchner | Sep 1962 | A |
3130539 | Davis | Apr 1964 | A |
3355873 | Morf | Dec 1967 | A |
3362154 | Perret | Jan 1968 | A |
3410247 | Dronberger | Nov 1968 | A |
3495398 | Widmer et al. | Feb 1970 | A |
3577876 | Spadini | May 1971 | A |
3621649 | Vulcan et al. | Nov 1971 | A |
3662618 | Kroll et al. | May 1972 | A |
3733803 | Hiraga | May 1973 | A |
3937002 | Van Haften | Feb 1976 | A |
4007347 | Haber | Feb 1977 | A |
4031341 | Wuthrich et al. | Jun 1977 | A |
4037068 | Gaynor | Jul 1977 | A |
4051665 | Arn | Oct 1977 | A |
4077200 | Schneider | Mar 1978 | A |
4133404 | Griffin | Jan 1979 | A |
4170104 | Yamagata | Oct 1979 | A |
4203280 | Ziegler | May 1980 | A |
4258096 | LaMarche | Mar 1981 | A |
4274152 | Ikegami | Jun 1981 | A |
4287400 | Kitik | Sep 1981 | A |
4289400 | Kubola et al. | Sep 1981 | A |
4311026 | Ochoa | Jan 1982 | A |
4311990 | Burke | Jan 1982 | A |
4324956 | Sakakino et al. | Apr 1982 | A |
4345119 | Latasiewicz | Aug 1982 | A |
4364674 | Tesch | Dec 1982 | A |
4379642 | Meyrat | Apr 1983 | A |
4395134 | Luce | Jul 1983 | A |
4396298 | Ripley | Aug 1983 | A |
4417824 | Paterson et al. | Nov 1983 | A |
4448199 | Schmid | May 1984 | A |
4520306 | Kirby | May 1985 | A |
4581509 | Sanford et al. | Apr 1986 | A |
4600316 | Besson | Jul 1986 | A |
4617461 | Subbarao et al. | Oct 1986 | A |
4634861 | Ching et al. | Jan 1987 | A |
4641026 | Garcia, Jr. | Feb 1987 | A |
4670737 | Rilling | Jun 1987 | A |
4766642 | Gaffney et al. | Aug 1988 | A |
4783772 | Umemoto et al. | Nov 1988 | A |
4884073 | Souloumiac | Nov 1989 | A |
4914831 | Kanezashi et al. | Apr 1990 | A |
4922070 | Dorkinski | May 1990 | A |
4931794 | Haag | Jun 1990 | A |
4952799 | Loewen | Aug 1990 | A |
4980685 | Souloumiac et al. | Dec 1990 | A |
4987299 | Kobayashi et al. | Jan 1991 | A |
5001687 | Brien | Mar 1991 | A |
5034602 | Garcia et al. | Jul 1991 | A |
5177355 | Branan | Jan 1993 | A |
5214278 | Banda | May 1993 | A |
5258592 | Nishikawa et al. | Nov 1993 | A |
5288993 | Bidiville et al. | Feb 1994 | A |
5347123 | Jackson et al. | Sep 1994 | A |
5383166 | Gallay | Jan 1995 | A |
5471054 | Watanabe | Nov 1995 | A |
5477508 | Will | Dec 1995 | A |
5509174 | Worrell | Apr 1996 | A |
5559761 | Frenkel et al. | Sep 1996 | A |
5572314 | Hyman et al. | Nov 1996 | A |
5583560 | Florin et al. | Dec 1996 | A |
5631881 | Pessey et al. | May 1997 | A |
5726645 | Kamon et al. | Mar 1998 | A |
5738104 | Lo | Apr 1998 | A |
5748111 | Bates | May 1998 | A |
5825353 | Will | Oct 1998 | A |
5841050 | Clift et al. | Nov 1998 | A |
5847335 | Sugahara et al. | Dec 1998 | A |
5867082 | Van Zeeland | Feb 1999 | A |
5943233 | Ebina | Aug 1999 | A |
5953001 | Challener et al. | Sep 1999 | A |
5960366 | Duwaer et al. | Sep 1999 | A |
5963332 | Feldman et al. | Oct 1999 | A |
5999168 | Rosenberg et al. | Dec 1999 | A |
6069567 | Zawilski | May 2000 | A |
6128006 | Rosenberg et al. | Oct 2000 | A |
6134189 | Carrard | Oct 2000 | A |
6154201 | Levin et al. | Nov 2000 | A |
6175679 | Veligdan et al. | Jan 2001 | B1 |
6203190 | Stotz | Mar 2001 | B1 |
6241684 | Amano | Jun 2001 | B1 |
6246050 | Tullis et al. | Jun 2001 | B1 |
6252825 | Perotto | Jun 2001 | B1 |
6304247 | Black | Oct 2001 | B1 |
6355891 | Ikunami | Mar 2002 | B1 |
6361502 | Puolakanaho et al. | Mar 2002 | B1 |
6377239 | Isikawa | Apr 2002 | B1 |
6392640 | Will | May 2002 | B1 |
6396006 | Yokoji et al. | May 2002 | B1 |
6422740 | Leuenberger | Jul 2002 | B1 |
6477117 | Narayanaswami et al. | Nov 2002 | B1 |
6502982 | Bach et al. | Jan 2003 | B1 |
6525278 | Villain et al. | Feb 2003 | B2 |
6556222 | Narayanaswami | Apr 2003 | B1 |
6575618 | Inoue et al. | Jun 2003 | B1 |
6587400 | Line | Jul 2003 | B1 |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6646635 | Pogatetz et al. | Nov 2003 | B2 |
6661438 | Shiraishi et al. | Nov 2003 | B1 |
6672758 | Ehrsam et al. | Jan 2004 | B2 |
6794992 | Rogers | Sep 2004 | B1 |
6809275 | Cheng et al. | Oct 2004 | B1 |
6834430 | Worrell | Dec 2004 | B2 |
6846998 | Hasumi et al. | Jan 2005 | B2 |
6882596 | Guanter | Apr 2005 | B2 |
6888076 | Hetherington | May 2005 | B2 |
6896403 | Gau | May 2005 | B1 |
6909378 | Lambrechts et al. | Jun 2005 | B1 |
6914551 | Vidal | Jul 2005 | B2 |
6950695 | Chen | Sep 2005 | B2 |
6961099 | Takano et al. | Nov 2005 | B2 |
6963039 | Weng et al. | Nov 2005 | B1 |
6967903 | Guanter | Nov 2005 | B2 |
6977868 | Brewer et al. | Dec 2005 | B2 |
6982930 | Hung | Jan 2006 | B1 |
6985107 | Anson | Jan 2006 | B2 |
6987568 | Dana | Jan 2006 | B2 |
6998553 | Hisamune et al. | Feb 2006 | B2 |
7009915 | Brewer et al. | Mar 2006 | B2 |
7016263 | Gueissaz et al. | Mar 2006 | B2 |
7021442 | Borgerson | Apr 2006 | B2 |
7031228 | Born et al. | Apr 2006 | B2 |
7034237 | Ferri et al. | Apr 2006 | B2 |
7081905 | Raghunath et al. | Jul 2006 | B1 |
7102626 | Denny, III | Sep 2006 | B2 |
7106307 | Cok | Sep 2006 | B2 |
7111365 | Howie, Jr. | Sep 2006 | B1 |
7113450 | Plancon et al. | Sep 2006 | B2 |
7119289 | Lacroix | Oct 2006 | B2 |
7135673 | Saint Clair | Nov 2006 | B2 |
7167083 | Giles | Jan 2007 | B2 |
7187359 | Numata | Mar 2007 | B2 |
7244927 | Huynh | Jul 2007 | B2 |
7255473 | Hiranuma et al. | Aug 2007 | B2 |
7265336 | Hataguchi et al. | Sep 2007 | B2 |
7274303 | Dresti et al. | Sep 2007 | B2 |
7285738 | Lavigne et al. | Oct 2007 | B2 |
7286063 | Gauthey | Oct 2007 | B2 |
7292741 | Ishiyama et al. | Nov 2007 | B2 |
7358481 | Yeoh et al. | Apr 2008 | B2 |
7369308 | Tsuruta et al. | May 2008 | B2 |
7371745 | Ebright et al. | May 2008 | B2 |
7385874 | Vuilleumier | Jun 2008 | B2 |
7404667 | Born et al. | Jul 2008 | B2 |
7465917 | Chin et al. | Dec 2008 | B2 |
7468036 | Rulkov et al. | Dec 2008 | B1 |
7474592 | Lyon | Jan 2009 | B2 |
7506269 | Lang et al. | Mar 2009 | B2 |
7520664 | Wai | Apr 2009 | B2 |
7528824 | Kong | May 2009 | B2 |
7545367 | Sunda et al. | Jun 2009 | B2 |
7557795 | Kong et al. | Jul 2009 | B2 |
7591582 | Hiranuma et al. | Sep 2009 | B2 |
7593755 | Colando et al. | Sep 2009 | B2 |
7605846 | Watanabe | Oct 2009 | B2 |
7634263 | Louch et al. | Dec 2009 | B2 |
7646677 | Nakamura | Jan 2010 | B2 |
7655874 | Akieda | Feb 2010 | B2 |
7682070 | Burton | Mar 2010 | B2 |
7708457 | Girardin | May 2010 | B2 |
7710456 | Koshiba et al. | May 2010 | B2 |
7732724 | Otani et al. | Jun 2010 | B2 |
7761246 | Matsui | Jul 2010 | B2 |
7763819 | Ieda et al. | Jul 2010 | B2 |
7772507 | Orr | Aug 2010 | B2 |
7778115 | Ruchonnet | Aug 2010 | B2 |
7781726 | Matsui et al. | Aug 2010 | B2 |
RE41637 | O'Hara et al. | Sep 2010 | E |
7791587 | Kosugi | Sep 2010 | B2 |
7791588 | Tierling et al. | Sep 2010 | B2 |
7791597 | Silverstein et al. | Sep 2010 | B2 |
7822469 | Lo | Oct 2010 | B2 |
7856255 | Tsuchiya et al. | Dec 2010 | B2 |
7858583 | Schmidt et al. | Dec 2010 | B2 |
7865324 | Lindberg | Jan 2011 | B2 |
7894957 | Carlson | Feb 2011 | B2 |
7946758 | Mooring | May 2011 | B2 |
8063892 | Shahoian et al. | Nov 2011 | B2 |
8138488 | Grot | Mar 2012 | B2 |
8143981 | Washizu et al. | Mar 2012 | B2 |
8167126 | Stiehl | May 2012 | B2 |
8169402 | Shahoian et al. | May 2012 | B2 |
8188989 | Levin et al. | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
8220987 | Kimura et al. | Jul 2012 | B2 |
8229535 | Mensinger et al. | Jul 2012 | B2 |
8248815 | Yang et al. | Aug 2012 | B2 |
8263886 | Lin et al. | Sep 2012 | B2 |
8263889 | Takahashi et al. | Sep 2012 | B2 |
8275327 | Yi et al. | Sep 2012 | B2 |
8294670 | Griffin et al. | Oct 2012 | B2 |
8312495 | Vanderhoff | Nov 2012 | B2 |
8318340 | Stimits | Nov 2012 | B2 |
8368677 | Yamamoto | Feb 2013 | B2 |
8371745 | Manni | Feb 2013 | B2 |
8373661 | Lan et al. | Feb 2013 | B2 |
8405618 | Colgate | Mar 2013 | B2 |
8410971 | Friedlander | Apr 2013 | B2 |
8432368 | Momeyer et al. | Apr 2013 | B2 |
8439559 | Luk et al. | May 2013 | B2 |
8441450 | Degner et al. | May 2013 | B2 |
8446713 | Lai | May 2013 | B2 |
8456430 | Oliver et al. | Jun 2013 | B2 |
8477118 | Lan et al. | Jul 2013 | B2 |
8493190 | Periquet et al. | Jul 2013 | B2 |
8508511 | Tanaka et al. | Aug 2013 | B2 |
8525777 | Stavely et al. | Sep 2013 | B2 |
8562489 | Burton et al. | Oct 2013 | B2 |
8568313 | Sadhu | Oct 2013 | B2 |
8576044 | Chapman | Nov 2013 | B2 |
8593598 | Chen et al. | Nov 2013 | B2 |
8607662 | Huang | Dec 2013 | B2 |
8614881 | Yoo | Dec 2013 | B2 |
8624836 | Miller et al. | Jan 2014 | B1 |
8666682 | LaVigne et al. | Mar 2014 | B2 |
8677285 | Tsern et al. | Mar 2014 | B2 |
8704787 | Yamamoto | Apr 2014 | B2 |
8711093 | Ong et al. | Apr 2014 | B2 |
8717151 | Forutanpour et al. | May 2014 | B2 |
8724087 | Van De Kerkhof et al. | May 2014 | B2 |
8730167 | Ming et al. | May 2014 | B2 |
8743088 | Watanabe | Jun 2014 | B2 |
8783944 | Doi | Jul 2014 | B2 |
8797153 | Vanhelle et al. | Aug 2014 | B2 |
8804993 | Shukla et al. | Aug 2014 | B2 |
8810514 | Zhao et al. | Aug 2014 | B2 |
8816962 | Obermeyer et al. | Aug 2014 | B2 |
8824245 | Lau et al. | Sep 2014 | B2 |
8847741 | Birnbaum et al. | Sep 2014 | B2 |
8851372 | Zhou | Oct 2014 | B2 |
8859971 | Weber | Oct 2014 | B2 |
8860674 | Lee et al. | Oct 2014 | B2 |
8863219 | Brown et al. | Oct 2014 | B2 |
D717679 | Anderssen | Nov 2014 | S |
8878657 | Periquet et al. | Nov 2014 | B2 |
8885856 | Sacha | Nov 2014 | B2 |
8895911 | Takahashi | Nov 2014 | B2 |
8905631 | Sakurazawa et al. | Dec 2014 | B2 |
8908477 | Peters | Dec 2014 | B2 |
8920022 | Ishida et al. | Dec 2014 | B2 |
8922399 | Bajaj et al. | Dec 2014 | B2 |
8928452 | Kim et al. | Jan 2015 | B2 |
8948832 | Hong et al. | Feb 2015 | B2 |
8954135 | Yuen et al. | Feb 2015 | B2 |
8975543 | Hakemeyer | Mar 2015 | B2 |
8994827 | Mistry et al. | Mar 2015 | B2 |
9001625 | Essery et al. | Apr 2015 | B2 |
9010945 | Vasylyev | Apr 2015 | B2 |
9024733 | Wouters | May 2015 | B2 |
9028134 | Koshoji et al. | May 2015 | B2 |
9030446 | Mistry et al. | May 2015 | B2 |
9034666 | Vaganov et al. | May 2015 | B2 |
9039614 | Yuen et al. | May 2015 | B2 |
9041663 | Westerman | May 2015 | B2 |
9042971 | Brumback et al. | May 2015 | B2 |
9049998 | Brumback et al. | Jun 2015 | B2 |
9052696 | Breuillot et al. | Jun 2015 | B2 |
9086717 | Meerovitsch | Jul 2015 | B2 |
9086738 | Leung et al. | Jul 2015 | B2 |
9091309 | Battlogg | Jul 2015 | B2 |
9100493 | Zhou | Aug 2015 | B1 |
9101184 | Wilson | Aug 2015 | B2 |
9105413 | Hiranuma et al. | Aug 2015 | B2 |
9123483 | Ferri et al. | Sep 2015 | B2 |
9134807 | Shaw et al. | Sep 2015 | B2 |
9141087 | Brown et al. | Sep 2015 | B2 |
9176577 | Jangaard et al. | Nov 2015 | B2 |
9176598 | Sweetser et al. | Nov 2015 | B2 |
9202372 | Reams et al. | Dec 2015 | B2 |
9213409 | Redelsheimer et al. | Dec 2015 | B2 |
9223296 | Yang et al. | Dec 2015 | B2 |
9241635 | Yuen et al. | Jan 2016 | B2 |
9244438 | Hoover et al. | Jan 2016 | B2 |
9256209 | Yang et al. | Feb 2016 | B2 |
9277156 | Bennett et al. | Mar 2016 | B2 |
9348322 | Fraser et al. | May 2016 | B2 |
9350850 | Pope et al. | May 2016 | B2 |
9367146 | Piot | Jun 2016 | B2 |
9386932 | Chatterjee et al. | Jul 2016 | B2 |
9426275 | Eim et al. | Aug 2016 | B2 |
9430042 | Levin | Aug 2016 | B2 |
9437357 | Furuki et al. | Sep 2016 | B2 |
9449770 | Sanford et al. | Sep 2016 | B2 |
9453939 | Tortora et al. | Sep 2016 | B2 |
9501044 | Jackson et al. | Nov 2016 | B2 |
9520100 | Houjou et al. | Dec 2016 | B2 |
9532723 | Kim | Jan 2017 | B2 |
9542016 | Armstrong-Muntner | Jan 2017 | B2 |
9545541 | Aragones et al. | Jan 2017 | B2 |
9547280 | Born et al. | Jan 2017 | B2 |
9552023 | Joo et al. | Jan 2017 | B2 |
9599964 | Gracia | Mar 2017 | B2 |
9600071 | Rothkopf | Mar 2017 | B2 |
9607505 | Rothkopf et al. | Mar 2017 | B2 |
9620312 | Ely et al. | Apr 2017 | B2 |
9627163 | Ely | Apr 2017 | B2 |
9632318 | Goto et al. | Apr 2017 | B2 |
9632537 | Memering | Apr 2017 | B2 |
9638587 | Marquas et al. | May 2017 | B2 |
9651922 | Hysek et al. | May 2017 | B2 |
9659482 | Yang et al. | May 2017 | B2 |
9680831 | Jooste et al. | Jun 2017 | B2 |
9709956 | Ely et al. | Jul 2017 | B1 |
9753436 | Ely et al. | Sep 2017 | B2 |
D800172 | Akana | Oct 2017 | S |
9800717 | Ma et al. | Oct 2017 | B2 |
9836025 | Ely et al. | Dec 2017 | B2 |
9851613 | Noble et al. | Dec 2017 | B2 |
9873711 | Hoover et al. | Jan 2018 | B2 |
9874945 | Fukumoto | Jan 2018 | B2 |
9886006 | Ely et al. | Feb 2018 | B2 |
9891590 | Shim et al. | Feb 2018 | B2 |
9891651 | Jackson et al. | Feb 2018 | B2 |
9891667 | Jung et al. | Feb 2018 | B2 |
9898032 | Hafez et al. | Feb 2018 | B2 |
9913591 | Lapetina et al. | Mar 2018 | B2 |
9921548 | Mitani | Mar 2018 | B2 |
9927902 | Burr et al. | Mar 2018 | B2 |
9939923 | Sharma | Apr 2018 | B2 |
9946297 | Nazzaro et al. | Apr 2018 | B2 |
9952558 | Ely | Apr 2018 | B2 |
9952682 | Zhang et al. | Apr 2018 | B2 |
9971305 | Ely et al. | May 2018 | B2 |
9971405 | Salo et al. | May 2018 | B2 |
9971407 | Holenarsipur et al. | May 2018 | B2 |
9979426 | Na et al. | May 2018 | B2 |
10001817 | Zambetti et al. | Jun 2018 | B2 |
10012550 | Yang | Jul 2018 | B2 |
10018966 | Ely et al. | Jul 2018 | B2 |
10019097 | Ely et al. | Jul 2018 | B2 |
10037006 | Ely | Jul 2018 | B2 |
10037081 | Grant | Jul 2018 | B2 |
10048802 | Shedletsky | Aug 2018 | B2 |
10057470 | Kim et al. | Aug 2018 | B2 |
10061399 | Bushnell et al. | Aug 2018 | B2 |
10066970 | Gowreesunker et al. | Sep 2018 | B2 |
10092203 | Mirov | Oct 2018 | B2 |
10108016 | Bosveld | Oct 2018 | B2 |
10114342 | Kim et al. | Oct 2018 | B2 |
10145711 | Boonsom et al. | Dec 2018 | B2 |
10175652 | Ely et al. | Jan 2019 | B2 |
10190891 | Rothkopf et al. | Jan 2019 | B1 |
10191455 | Shim et al. | Jan 2019 | B2 |
10203662 | Lin et al. | Feb 2019 | B1 |
10209148 | Lyon et al. | Feb 2019 | B2 |
10216147 | Ely et al. | Feb 2019 | B2 |
10222755 | Coakley et al. | Mar 2019 | B2 |
10222756 | Ely et al. | Mar 2019 | B2 |
10222909 | Shedletsky et al. | Mar 2019 | B2 |
10234828 | Ely et al. | Mar 2019 | B2 |
10241593 | Chen | Mar 2019 | B2 |
10296125 | Ely et al. | May 2019 | B2 |
10331081 | Ely et al. | Jun 2019 | B2 |
10331082 | Ely et al. | Jun 2019 | B2 |
10332111 | Mokhasi et al. | Jun 2019 | B2 |
10353487 | Chung et al. | Jul 2019 | B2 |
10379629 | Bushnell et al. | Aug 2019 | B2 |
10386940 | Kim | Aug 2019 | B2 |
10401961 | Cruz-Hernandez et al. | Sep 2019 | B2 |
10429959 | Battlogg | Oct 2019 | B2 |
10474194 | Ell et al. | Nov 2019 | B1 |
10503258 | Holenarsipur et al. | Dec 2019 | B2 |
10509486 | Bushnell et al. | Dec 2019 | B2 |
10524671 | Lamego | Jan 2020 | B2 |
10534320 | Ferri | Jan 2020 | B2 |
10551798 | Bushnell et al. | Feb 2020 | B1 |
10572053 | Ely et al. | Feb 2020 | B2 |
10593617 | Ashikaga et al. | Mar 2020 | B2 |
10599101 | Rothkopf et al. | Mar 2020 | B2 |
10610157 | Pandya et al. | Apr 2020 | B2 |
10613685 | Shedletsky | Apr 2020 | B2 |
10627783 | Rothkopf et al. | Apr 2020 | B2 |
10655988 | Boonsom et al. | May 2020 | B2 |
10664074 | Moussette et al. | May 2020 | B2 |
10732571 | Ely et al. | Aug 2020 | B2 |
10765019 | Werner | Sep 2020 | B2 |
10840041 | Harms | Nov 2020 | B1 |
10845764 | Ely et al. | Nov 2020 | B2 |
10852700 | Abramov | Dec 2020 | B2 |
10852855 | Niu | Dec 2020 | B2 |
10871385 | Kok | Dec 2020 | B2 |
10884549 | Shedletsky et al. | Jan 2021 | B2 |
10936071 | Pandya et al. | Mar 2021 | B2 |
10942491 | Rothkopf | Mar 2021 | B2 |
10948880 | Ely et al. | Mar 2021 | B2 |
10955937 | Bushnell et al. | Mar 2021 | B2 |
10962930 | Ely et al. | Mar 2021 | B2 |
10962935 | Ely et al. | Mar 2021 | B1 |
10987054 | Pandya et al. | Apr 2021 | B2 |
11000193 | Tal et al. | May 2021 | B2 |
11002572 | Boonsom et al. | May 2021 | B2 |
11029831 | Block et al. | Jun 2021 | B2 |
11036318 | Kuboyama | Jun 2021 | B2 |
11148292 | Bryner et al. | Oct 2021 | B2 |
11181863 | Ely et al. | Nov 2021 | B2 |
11194099 | Taylor et al. | Dec 2021 | B2 |
11194298 | Roach et al. | Dec 2021 | B2 |
11209777 | Minakuchi et al. | Dec 2021 | B2 |
11221590 | Rothkopf et al. | Jan 2022 | B2 |
11347189 | Herrera et al. | May 2022 | B1 |
11350869 | Rasmussen et al. | Jun 2022 | B2 |
11360440 | Perkins et al. | Jun 2022 | B2 |
11385599 | Ely et al. | Jul 2022 | B2 |
11432766 | Pandya et al. | Sep 2022 | B2 |
11474483 | Rothkopf | Oct 2022 | B2 |
11531306 | Ely et al. | Dec 2022 | B2 |
11556095 | Hiemstra et al. | Jan 2023 | B2 |
11561515 | Beyhs | Jan 2023 | B2 |
11567457 | Rothkopf et al. | Jan 2023 | B2 |
11644800 | Holenarsipur et al. | May 2023 | B2 |
11669205 | Shedletsky et al. | Jun 2023 | B2 |
11674825 | Li et al. | Jun 2023 | B2 |
11720064 | Ely | Aug 2023 | B2 |
11754981 | Perkins et al. | Sep 2023 | B2 |
11796961 | Ely et al. | Oct 2023 | B2 |
11815860 | Pandya et al. | Nov 2023 | B2 |
11860587 | Taylor et al. | Jan 2024 | B2 |
12045416 | Shedletsky et al. | Jul 2024 | B2 |
20020101457 | Lang | Aug 2002 | A1 |
20030174590 | Arikawa et al. | Sep 2003 | A1 |
20040047244 | Iino et al. | Mar 2004 | A1 |
20040082414 | Knox | Apr 2004 | A1 |
20040130971 | Ecoffet et al. | Jul 2004 | A1 |
20040264301 | Howard et al. | Dec 2004 | A1 |
20050075558 | Vecerina et al. | Apr 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20060250377 | Zadesky et al. | Nov 2006 | A1 |
20070013775 | Shin | Jan 2007 | A1 |
20070050054 | Sambandam Guruparan et al. | Mar 2007 | A1 |
20070182708 | Poupyrev et al. | Aug 2007 | A1 |
20070211042 | Kim et al. | Sep 2007 | A1 |
20070222756 | Wu et al. | Sep 2007 | A1 |
20070229671 | Takeshita et al. | Oct 2007 | A1 |
20070242569 | Inoue | Oct 2007 | A1 |
20070247421 | Orsley et al. | Oct 2007 | A1 |
20080130914 | Cho | Jun 2008 | A1 |
20080181059 | Wai | Jul 2008 | A1 |
20080185272 | Otani et al. | Aug 2008 | A1 |
20090025872 | Nilsen et al. | Jan 2009 | A1 |
20090051649 | Rondel | Feb 2009 | A1 |
20090073119 | Le et al. | Mar 2009 | A1 |
20090115748 | Tanaka et al. | May 2009 | A1 |
20090122656 | Bonnet et al. | May 2009 | A1 |
20090146975 | Chang | Jun 2009 | A1 |
20090152452 | Lee et al. | Jun 2009 | A1 |
20090217207 | Kagermeier et al. | Aug 2009 | A1 |
20090285443 | Camp et al. | Nov 2009 | A1 |
20090312051 | Hansson et al. | Dec 2009 | A1 |
20100033430 | Kakutani et al. | Feb 2010 | A1 |
20100053468 | Harvill | Mar 2010 | A1 |
20100079225 | Washizu et al. | Apr 2010 | A1 |
20100081375 | Rosenblatt et al. | Apr 2010 | A1 |
20100149099 | Elias | Jun 2010 | A1 |
20110007468 | Burton et al. | Jan 2011 | A1 |
20110090148 | Li et al. | Apr 2011 | A1 |
20110158057 | Brewer et al. | Jun 2011 | A1 |
20110242064 | Ono et al. | Oct 2011 | A1 |
20110249378 | Yoo | Oct 2011 | A1 |
20110270358 | Davis et al. | Nov 2011 | A1 |
20120067711 | Yang | Mar 2012 | A1 |
20120068857 | Rothkopf et al. | Mar 2012 | A1 |
20120075082 | Rothkopf et al. | Mar 2012 | A1 |
20120112859 | Park et al. | May 2012 | A1 |
20120113044 | Strazisar et al. | May 2012 | A1 |
20120206248 | Biggs | Aug 2012 | A1 |
20120272784 | Bailey et al. | Nov 2012 | A1 |
20130037396 | Yu | Feb 2013 | A1 |
20130087443 | Kikuchi | Apr 2013 | A1 |
20130191220 | Dent et al. | Jul 2013 | A1 |
20130235704 | Grinberg | Sep 2013 | A1 |
20130261405 | Lee et al. | Oct 2013 | A1 |
20130335196 | Zhang et al. | Dec 2013 | A1 |
20140009397 | Gillespie et al. | Jan 2014 | A1 |
20140045547 | Singamsetty et al. | Feb 2014 | A1 |
20140071098 | You | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140132516 | Tsai et al. | May 2014 | A1 |
20140143784 | Mistry | May 2014 | A1 |
20140197936 | Biggs et al. | Jul 2014 | A1 |
20140340318 | Stringer et al. | Nov 2014 | A1 |
20140347289 | Suh et al. | Nov 2014 | A1 |
20140368442 | Vahtola | Dec 2014 | A1 |
20140375579 | Fujiwara | Dec 2014 | A1 |
20150026647 | Park et al. | Jan 2015 | A1 |
20150041289 | Ely et al. | Feb 2015 | A1 |
20150049059 | Zadesky et al. | Feb 2015 | A1 |
20150098309 | Adams et al. | Apr 2015 | A1 |
20150124415 | Goyal et al. | May 2015 | A1 |
20150186609 | Utter, II | Jul 2015 | A1 |
20150221460 | Teplitxky et al. | Aug 2015 | A1 |
20150293592 | Cheong | Oct 2015 | A1 |
20150320346 | Chen | Nov 2015 | A1 |
20150338642 | Sanford | Nov 2015 | A1 |
20150341031 | Marquas et al. | Nov 2015 | A1 |
20150366098 | Lapetina et al. | Dec 2015 | A1 |
20160018846 | Zenoff | Jan 2016 | A1 |
20160054813 | Schediwy et al. | Feb 2016 | A1 |
20160058375 | Rothkopf et al. | Mar 2016 | A1 |
20160061636 | Gowreesunker et al. | Mar 2016 | A1 |
20160062623 | Howard et al. | Mar 2016 | A1 |
20160069713 | Ruh et al. | Mar 2016 | A1 |
20160098016 | Ely et al. | Apr 2016 | A1 |
20160109861 | Kim et al. | Apr 2016 | A1 |
20160116306 | Ferri et al. | Apr 2016 | A1 |
20160147432 | Shi et al. | May 2016 | A1 |
20160170598 | Zambetti et al. | Jun 2016 | A1 |
20160170608 | Zambetti et al. | Jun 2016 | A1 |
20160170624 | Zambetti et al. | Jun 2016 | A1 |
20160241688 | Vossoughi | Aug 2016 | A1 |
20160253487 | Sarkar et al. | Sep 2016 | A1 |
20160306446 | Chung et al. | Oct 2016 | A1 |
20160320583 | Hall, Jr. | Nov 2016 | A1 |
20160327911 | Eim et al. | Nov 2016 | A1 |
20160338642 | Parara et al. | Nov 2016 | A1 |
20160378069 | Rothkopf et al. | Dec 2016 | A1 |
20160378070 | Rothkopf et al. | Dec 2016 | A1 |
20170011210 | Cheong et al. | Jan 2017 | A1 |
20170027461 | Shin et al. | Feb 2017 | A1 |
20170031449 | Karsten et al. | Feb 2017 | A1 |
20170061863 | Eguchi | Mar 2017 | A1 |
20170069443 | Wang et al. | Mar 2017 | A1 |
20170069444 | Wang et al. | Mar 2017 | A1 |
20170069447 | Wang et al. | Mar 2017 | A1 |
20170089735 | Ruh | Mar 2017 | A1 |
20170090572 | Holenarsipur | Mar 2017 | A1 |
20170090599 | Kuboyama | Mar 2017 | A1 |
20170104902 | Kim et al. | Apr 2017 | A1 |
20170139489 | Chen et al. | May 2017 | A1 |
20170216519 | Vouillamoz | Aug 2017 | A1 |
20170216668 | Burton et al. | Aug 2017 | A1 |
20170238138 | Aminzade | Aug 2017 | A1 |
20170251561 | Fleck et al. | Aug 2017 | A1 |
20170269715 | Kim et al. | Sep 2017 | A1 |
20170285404 | Kubota et al. | Oct 2017 | A1 |
20170301314 | Kim et al. | Oct 2017 | A1 |
20170307414 | Ferri et al. | Oct 2017 | A1 |
20170319082 | Sayme | Nov 2017 | A1 |
20170331869 | Bendahan et al. | Nov 2017 | A1 |
20170357465 | Dzeryn et al. | Dec 2017 | A1 |
20180018026 | Bushnell et al. | Jan 2018 | A1 |
20180059624 | James | Mar 2018 | A1 |
20180136686 | Jackson et al. | May 2018 | A1 |
20180196517 | Tan et al. | Jul 2018 | A1 |
20180225701 | Han | Aug 2018 | A1 |
20180235491 | Bayley et al. | Aug 2018 | A1 |
20180337551 | Park | Nov 2018 | A1 |
20190025940 | Shim et al. | Jan 2019 | A1 |
20190056700 | Matsuno | Feb 2019 | A1 |
20190072911 | Ely et al. | Mar 2019 | A1 |
20190072912 | Pandya et al. | Mar 2019 | A1 |
20190082547 | Werner et al. | Mar 2019 | A1 |
20190088583 | Ashikaga et al. | Mar 2019 | A1 |
20190278232 | Ely et al. | Sep 2019 | A1 |
20190317454 | Holenarsipur et al. | Oct 2019 | A1 |
20190391539 | Perkins et al. | Dec 2019 | A1 |
20200041962 | Beyhs | Feb 2020 | A1 |
20200064774 | Ely et al. | Feb 2020 | A1 |
20200064779 | Pandya et al. | Feb 2020 | A1 |
20200073339 | Roach et al. | Mar 2020 | A1 |
20200085331 | Chou | Mar 2020 | A1 |
20200110473 | Bushnell et al. | Apr 2020 | A1 |
20200150815 | Ely et al. | May 2020 | A1 |
20200159172 | Bushnell et al. | May 2020 | A1 |
20200233380 | Rothkopf | Jul 2020 | A1 |
20200233529 | Shedletsky et al. | Jul 2020 | A1 |
20200310609 | Ham | Oct 2020 | A1 |
20210055696 | Ely | Feb 2021 | A1 |
20210060783 | Bryner et al. | Mar 2021 | A1 |
20210089136 | Hossain et al. | Mar 2021 | A1 |
20210096688 | Shedletsky et al. | Apr 2021 | A1 |
20210157278 | Xue | May 2021 | A1 |
20210181682 | Ely et al. | Jun 2021 | A1 |
20210181688 | Ely et al. | Jun 2021 | A1 |
20210181690 | Rothkopf et al. | Jun 2021 | A1 |
20210181691 | Rothkopf et al. | Jun 2021 | A1 |
20210181692 | Rothkopf et al. | Jun 2021 | A1 |
20210181865 | Bushnell et al. | Jun 2021 | A1 |
20210199475 | Dantler et al. | Jul 2021 | A1 |
20210255590 | Ely et al. | Aug 2021 | A1 |
20210325168 | Lv et al. | Oct 2021 | A1 |
20210353226 | Hiemstra | Nov 2021 | A1 |
20210373501 | Pandya et al. | Dec 2021 | A1 |
20210405594 | Holenarsipur et al. | Dec 2021 | A1 |
20220043397 | Ely et al. | Feb 2022 | A1 |
20220043402 | Roach et al. | Feb 2022 | A1 |
20220074731 | Jang et al. | Mar 2022 | A1 |
20220075328 | Taylor | Mar 2022 | A1 |
20220261111 | Shedletsky et al. | Aug 2022 | A1 |
20220299944 | Ely | Sep 2022 | A1 |
20220326660 | Perkins | Oct 2022 | A1 |
20220413446 | Rothkopf et al. | Dec 2022 | A1 |
20230012897 | Bushnell et al. | Jan 2023 | A1 |
20230013283 | Herrera | Jan 2023 | A1 |
20230028554 | Rothkopf et al. | Jan 2023 | A1 |
20230077241 | Pandya et al. | Mar 2023 | A1 |
20230097827 | Rothkopf et al. | Mar 2023 | A1 |
20230101015 | Ely et al. | Mar 2023 | A1 |
20230161299 | Beyhs | May 2023 | A1 |
20230168635 | Hiemstra et al. | Jun 2023 | A1 |
20230213893 | Rothkopf et al. | Jul 2023 | A1 |
20230341819 | Ely et al. | Jul 2023 | A1 |
20230258479 | Li et al. | Aug 2023 | A1 |
20230259235 | Shedletsky et al. | Aug 2023 | A1 |
20230273572 | Holenarsipur et al. | Aug 2023 | A1 |
20230393536 | Perkins et al. | Dec 2023 | A1 |
20230418230 | Ely et al. | Dec 2023 | A1 |
20240036523 | Pandya et al. | Feb 2024 | A1 |
20240045383 | Roach et al. | Feb 2024 | A1 |
20240053707 | Ely et al. | Feb 2024 | A1 |
20240126219 | Taylor et al. | Apr 2024 | A1 |
20240152100 | Beyhs | May 2024 | A1 |
20240192804 | Shedletsky et al. | Jun 2024 | A1 |
20240264568 | Ely | Aug 2024 | A1 |
20240264569 | Davis et al. | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
2007313960 | May 2008 | AU |
1888928 | Jan 1937 | CH |
706101 | Aug 2013 | CH |
1302740 | Sep 2001 | CN |
1445627 | Oct 2003 | CN |
1504843 | Jun 2004 | CN |
1601408 | Mar 2005 | CN |
1624427 | Jun 2005 | CN |
1792295 | Jun 2006 | CN |
1825224 | Aug 2006 | CN |
101035148 | Sep 2007 | CN |
101201587 | Jun 2008 | CN |
201081979 | Jul 2008 | CN |
101404928 | Apr 2009 | CN |
201262741 | Jun 2009 | CN |
101641663 | Feb 2010 | CN |
101750958 | Jun 2010 | CN |
201638168 | Nov 2010 | CN |
101923314 | Dec 2010 | CN |
102067070 | May 2011 | CN |
102216959 | Oct 2011 | CN |
202008579 | Oct 2011 | CN |
102590925 | Jul 2012 | CN |
102741772 | Oct 2012 | CN |
102890443 | Jan 2013 | CN |
202710937 | Jan 2013 | CN |
103177891 | Jun 2013 | CN |
103191557 | Jul 2013 | CN |
103253067 | Aug 2013 | CN |
103645804 | Mar 2014 | CN |
203564224 | Apr 2014 | CN |
103852090 | Jun 2014 | CN |
203630524 | Jun 2014 | CN |
103919536 | Jul 2014 | CN |
103956006 | Jul 2014 | CN |
203693601 | Jul 2014 | CN |
203705837 | Jul 2014 | CN |
203732900 | Jul 2014 | CN |
103995456 | Aug 2014 | CN |
104020660 | Sep 2014 | CN |
203941395 | Nov 2014 | CN |
104777987 | Apr 2015 | CN |
104685794 | Jun 2015 | CN |
204479929 | Jul 2015 | CN |
204496177 | Jul 2015 | CN |
104880937 | Sep 2015 | CN |
104898406 | Sep 2015 | CN |
204650147 | Sep 2015 | CN |
105022947 | Nov 2015 | CN |
105096979 | Nov 2015 | CN |
105339871 | Feb 2016 | CN |
105446125 | Mar 2016 | CN |
205121417 | Mar 2016 | CN |
105547146 | May 2016 | CN |
105556433 | May 2016 | CN |
105683876 | Jun 2016 | CN |
105683877 | Jun 2016 | CN |
105760067 | Jul 2016 | CN |
105955519 | Sep 2016 | CN |
205645648 | Oct 2016 | CN |
205721636 | Nov 2016 | CN |
205750744 | Nov 2016 | CN |
106236051 | Dec 2016 | CN |
106557218 | Apr 2017 | CN |
206147524 | May 2017 | CN |
206209589 | May 2017 | CN |
107111342 | Aug 2017 | CN |
107122088 | Sep 2017 | CN |
107966895 | Apr 2018 | CN |
209560397 | Oct 2019 | CN |
209625187 | Nov 2019 | CN |
111752138 | Oct 2020 | CN |
215494568 | Jan 2022 | CN |
114220694 | Mar 2022 | CN |
106125968 | Nov 2022 | CN |
218675709 | Mar 2023 | CN |
2352016 | Apr 1975 | DE |
3706194 | Sep 1988 | DE |
102008023651 | Nov 2009 | DE |
102016215087 | Mar 2017 | DE |
0165548 | Dec 1985 | EP |
0556155 | Aug 1993 | EP |
1345095 | Sep 2003 | EP |
1519452 | Mar 2005 | EP |
1669724 | Jun 2006 | EP |
1832969 | Sep 2007 | EP |
2375295 | Oct 2011 | EP |
2579186 | Apr 2013 | EP |
2720129 | Apr 2014 | EP |
2884239 | Jun 2015 | EP |
2030093 | Oct 1970 | FR |
2801402 | May 2001 | FR |
887369 | Jan 1962 | GB |
2433211 | Jun 2007 | GB |
S52151058 | Dec 1977 | JP |
S52164551 | Dec 1977 | JP |
S53093067 | Aug 1978 | JP |
S5478178 | Jun 1979 | JP |
S54087779 | Jun 1979 | JP |
S5708582 | Jan 1982 | JP |
S5734457 | Feb 1982 | JP |
S60103936 | Jun 1985 | JP |
S60103937 | Jun 1985 | JP |
H02285214 | Nov 1990 | JP |
H04093719 | Mar 1992 | JP |
H04157319 | May 1992 | JP |
H05203465 | Aug 1993 | JP |
H05312595 | Nov 1993 | JP |
H06050927 | Dec 1994 | JP |
H06331761 | Dec 1994 | JP |
H06347293 | Dec 1994 | JP |
H07116141 | May 1995 | JP |
H0914941 | Jan 1997 | JP |
H10161811 | Jun 1998 | JP |
H11121210 | Apr 1999 | JP |
H11191508 | Jul 1999 | JP |
2000258559 | Sep 2000 | JP |
2000316824 | Nov 2000 | JP |
2000337892 | Dec 2000 | JP |
2001084934 | Mar 2001 | JP |
2001167651 | Jun 2001 | JP |
2001202178 | Jul 2001 | JP |
2001215288 | Aug 2001 | JP |
2001289977 | Oct 2001 | JP |
2001524206 | Nov 2001 | JP |
2002071480 | Mar 2002 | JP |
2002165768 | Jun 2002 | JP |
2003036144 | Feb 2003 | JP |
2003050668 | Feb 2003 | JP |
2003151410 | May 2003 | JP |
2003215271 | Jul 2003 | JP |
2003331693 | Nov 2003 | JP |
2004079410 | Mar 2004 | JP |
2004184396 | Jul 2004 | JP |
2004028979 | Nov 2004 | JP |
2005017011 | Jan 2005 | JP |
2005063200 | Mar 2005 | JP |
2005099023 | Apr 2005 | JP |
2005108630 | Apr 2005 | JP |
2006101505 | Apr 2006 | JP |
2006164275 | Jun 2006 | JP |
3852854 | Dec 2006 | JP |
2007101380 | Apr 2007 | JP |
2007149620 | Jun 2007 | JP |
2007248176 | Sep 2007 | JP |
2007285748 | Nov 2007 | JP |
2007311153 | Nov 2007 | JP |
2008053980 | Mar 2008 | JP |
2008122124 | May 2008 | JP |
2008122377 | May 2008 | JP |
2008170436 | Jul 2008 | JP |
2008235226 | Oct 2008 | JP |
2009009382 | Jan 2009 | JP |
2009070657 | Apr 2009 | JP |
2009519737 | May 2009 | JP |
2009540399 | Nov 2009 | JP |
2010032545 | Feb 2010 | JP |
2010515153 | May 2010 | JP |
2010165001 | Jul 2010 | JP |
2010186572 | Aug 2010 | JP |
2010243344 | Oct 2010 | JP |
2010244797 | Oct 2010 | JP |
2011021929 | Feb 2011 | JP |
2011165468 | Aug 2011 | JP |
2011221659 | Nov 2011 | JP |
2012053801 | Mar 2012 | JP |
2012221905 | Nov 2012 | JP |
2013057516 | Mar 2013 | JP |
2013079961 | May 2013 | JP |
2013524189 | Jun 2013 | JP |
3190075 | Apr 2014 | JP |
5477393 | Apr 2014 | JP |
2014512556 | May 2014 | JP |
2014112222 | Jun 2014 | JP |
2014174031 | Sep 2014 | JP |
2017219448 | Dec 2017 | JP |
2018510451 | Apr 2018 | JP |
20010030477 | Apr 2001 | KR |
200278568 | Mar 2002 | KR |
20070011685 | Jan 2007 | KR |
20070014247 | Feb 2007 | KR |
100754674 | Sep 2007 | KR |
20080028935 | Apr 2008 | KR |
20080045397 | May 2008 | KR |
100849684 | Aug 2008 | KR |
1020080111563 | Dec 2008 | KR |
2020100007563 | Jul 2010 | KR |
20110011393 | Feb 2011 | KR |
20110012784 | Feb 2011 | KR |
20110103761 | Sep 2011 | KR |
20110113368 | Oct 2011 | KR |
20130036038 | Apr 2013 | KR |
20130131873 | Dec 2013 | KR |
20140051391 | Apr 2014 | KR |
20140064689 | May 2014 | KR |
20140104388 | Aug 2014 | KR |
20160017070 | Feb 2016 | KR |
20160048967 | May 2016 | KR |
20170106395 | Sep 2017 | KR |
10-2020-0027010 | Mar 2020 | KR |
102136836 | Jul 2020 | KR |
1040225 | Nov 2014 | NL |
129033 | Nov 2013 | RO |
200633681 | Oct 2006 | TW |
WO2001022038 | Mar 2001 | WO |
WO2001069567 | Sep 2001 | WO |
WO2003032538 | Apr 2003 | WO |
WO 10001299 | Jan 2010 | WO |
WO2010058376 | May 2010 | WO |
WO2012083380 | Jun 2012 | WO |
WO2012094805 | Jul 2012 | WO |
WO2014018118 | Jan 2014 | WO |
WO2014200766 | Dec 2014 | WO |
WO2015034149 | Mar 2015 | WO |
WO 15122885 | Aug 2015 | WO |
WO2015116111 | Aug 2015 | WO |
WO2015147756 | Oct 2015 | WO |
WO2016080669 | May 2016 | WO |
WO2016104922 | Jun 2016 | WO |
WO2016155761 | Oct 2016 | WO |
WO 16208835 | Dec 2016 | WO |
WO2016196171 | Dec 2016 | WO |
WO2016208835 | Dec 2016 | WO |
WO2017013278 | Jan 2017 | WO |
WO 18236553 | Dec 2018 | WO |
WO2020173085 | Sep 2020 | WO |
Entry |
---|
Author Unknown, “Desirable Android Wear smartwatch from LG,” Gulf News, Dubai, 3 pages, Jan. 30, 2015. |
Author Unknown, “Fossil Q ups smartwatch game with handsome design and build,” Business Mirror, Makati City, Philippines, 3 pages, Dec. 20, 2016. |
Author Unknown, “How Vesag Helps Kids Women and Visitors,” http://www.sooperarticles.com/health-fitness-articles/children-health-articles/how-vesag-helps-kids-women-visitors-218542.html, 2 pages, at least as early as May 20, 2015. |
Author Unknown, “mHealth,” http://mhealth.vesag.com/?m=201012, 7 pages, Dec. 23, 2010. |
Author Unknown, “mHealth Summit 2010,” http://www.virtualpressoffice.com/eventsSubmenu.do?page=exhibitorPage&showld=1551&companyId=5394, 5 pages, Nov. 18, 2010. |
Author Unknown, “MyKronoz ZeTime: World's Most Funded Hybrid Smartwatch Raised over $3M on Kickstarter, Running until Apr. 27,” Business Wire, New York, New York, 3 pages, Apr. 21, 2017. |
Author Unknown, “RedEye mini Plug-in Universal Remote Adapter for iPhone, iPod touch and iPad,” Amazon.com, 4 pages, date unknown. |
Author Unknown, “Re iPhone Universal Remote Control—Infrared Remote Control Accessory for iphone and ipod touch,” http://www.amazon.com/iPhone-Universal-Remote-Control-Accessory/dp/tech-data/B0038Z4 . . . , 2 pages, at least as early as Jul. 15, 2010. |
Author Unknown, “Vesag Wrist Watch for Dementia Care from VYZIN,” http://vyasa-kaaranam-ketkadey.blogspot.com/2011/03/vesag-wrist-watch-for-dementia-care.html, 2 pages, Mar. 31, 2011. |
Author Unknown, Vyzin Electronics Private Limited launches “Vesag Watch,” http://www.virtualpressoffice.com/showJointPage.do?page=jp&showId=1544, 5 pages, Jan. 6, 2011. |
Author Unknown, “Vyzin Unveiled Personal Emergency Response System (PERS) with Remote Health Monitoring That Can Be Used for Entire Family,” http://www.24-7pressrelease.com/press-release/vyzin-unveiled-personal-emergency-response-system-pers-with-remote-health-monitoring-that-can-be-used-for-entire-family-219317.php, 2 pages, Jun. 17, 2011. |
Author Unknown, “DeskThorityNet, Optical Switch Keyboards,” http://deskthority.net/keyboards-f2/optical-switch-keyboards-t1474.html, 22 pages, Jul. 11, 2015. |
Epstein et al., “Economical, High-Performance Optical Encoders,” Hewlett-Packard Journal, pp. 99-106, Oct. 1988. [text only version]. |
GreyB, “Google Watch: Convert your arm into a keyboard,” http://www.whatafuture.com/2014/02/28/google-smartwatch/#sthash.Yk35cDXK.dpbs, 3 pages, Feb. 28, 2014. |
IBM, “Additional Functionality Added to Cell Phone via “Learning” Function Button,” www.ip.com, 2 pages, Feb. 21, 2007. |
Kim, Joseph, “2010 mHealth Summit Emerges as Major One-Stop U.S. Venue for Mobile Health,” http://www.medicineandtechnology.com/2010/08/2010-mhealth-summit-emerges-as-major.html, 3 pages, Aug. 26, 2010. |
Krishnan et al., “A Miniature Surface Mount Reflective Optical Shaft Encoder,” Hewlett-Packard Journal, Article 8, pp. 1-6, Dec. 1996. |
Narayanaswami et al., “Challenges and considerations for the design and production of a purpose-optimized body-worn wrist-watch computer,” Defense, Security, and Cockpit Displays, 2004. |
M.T. Raghunath et al., User Interfaces for Applications on a Wrist Watch, Personal and Ubiquitous Computing, vol. 6, No. 1, 2002, Springer. |
Rick, “How VESAG Helps Health Conscious Citizens,” http://sensetekgroup.com/2010/11/29/wireless-health-monitoring-system/, 2 pages, Nov. 29, 2010. |
Sadhu, Rajendra, “How VESAG Helps People Who Want to ‘Be There’?,” http://ezinearticles.com/?How-Vesag-Helps-People-Who-Want-to-Be-There?&id-5423873, 1 page, Nov. 22, 2010. |
Sadhu, Rajendra, “Mobile Innovation Helps Dementia and Alzheimer's Patients,” http://www.itnewsafrica.com/2010/11/mobile-innovation-helps-dementia-andalzheimer%E2%80%99s-patients/, 3 pages, Nov. 22, 2010. |
Sherr, Sol, “Input Devices,” p. 55, Mar. 1988. |
Tran et al., “Universal Programmable Remote Control/Telephone,” www.ip.com, 2 pages, May 1, 1992. |
Number | Date | Country | |
---|---|---|---|
20230400818 A1 | Dec 2023 | US |