The present disclosure generally relates to methods and devices for surface finishing, and particularly to a rotational abrasive nano/micro finishing method and apparatus.
There is an ever-growing need for precisely finished surfaces with surface roughness in the order of micro/nanometer or sub-nanometer in different industries, especially high-tech industries including aerospace, military, automotive, medicine industries, etc. Traditional finishing methods ae not be capable of delivering such a roughness. In order to overcome various limitations of the traditional finishing processes researchers have developed several advanced finishing processes utilizing abrasives to finish the parts made of difficult-to-machine materials having complex geometrical shapes. Finishing rate, material removal and surface texture are the parameters which can be improved, using the advanced finishing methods.
Some of the advanced finishing methods are rather cost or time inefficient, which give rise to a need for an efficient and relatively low-cost method to provide such a finishing functionality to reach micro/nanometric roughness.
The following brief summary is not intended to include all features and aspects of the present application, nor does it imply that the application must include all features and aspects discussed in this summary.
Various exemplary methods and devices are disclosed, and examples may include a rotating abrasive finishing method and apparatus that may be configured to deliver finishing operation in the order of nanometer.
In one general aspect, the present disclosure describes a method for inner surface finishing of a workpiece, wherein the inner surface of the workpiece defines an opening with axial symmetry around a longitudinal axis of the workpiece. The method may include: pouring an abrasive medium inside the opening; urging the abrasive medium to rotate about the longitudinal axis in a first direction, thereby imposing a centrifugal force on the abrasive medium to accelerate the abrasive medium outwards from the center of rotation towards the inner surface of the opening, where the abrasive medium impacts the inner surface; and concurrently rotating the workpiece about the longitudinal axis in a second direction opposite the first direction.
In another general aspect, the present disclosure describes an apparatus for inner surface finishing of a workpiece, where the inner surface defines an opening inside the workpiece with axial symmetry around a longitudinal axis of the workpiece. The apparatus may include: a fixture configured to house and grip the workpiece; a stirrer having a central shaft and a plurality of radially extending blades connected to the central shaft and rotatable therewith, where the blades may be disposed within the opening defined by the inner surface of the workpiece; a first rotary actuator coupled to the central shaft and configured to drive a rotational movement of the stirrer about the longitudinal axis in a first direction; and a second rotary actuator coupled to the fixture and configured to drive a rotational movement of the fixture about the longitudinal axis in a second direction opposite the first direction. The abrasive medium may be poured between the blades inside the opening and the stirrer may be configured to accelerate the abrasive medium outwards form the center of rotation towards the inner surface of the opening.
In one implementation, the abrasive medium may be a mixture of processing oil and nanoparticles. In other implementations, the nanoparticles may be selected from boron carbide (B4C), silicon carbide (SiC), or combinations thereof.
In an aspect, imposing the centrifugal force to the abrasive medium may include utilizing a rotor to accelerate the abrasive medium outwards from the center of rotation, and the rotor is an impeller blades having different shapes and geometries.
In one implementation, the radially extending blades may have a proximal edge and a distal edge. The proximal edge may be configured to be connected to the central shaft and the distal edge may be shaped such that the horizontal distance between the distal edge and the inner surface of the opening is constant along the vertical length of the blades defining a working gap.
In another implementation, the working gap may define a contact zone for abrasive medium to rotate and impact the inner surface of the opening to perform surface finishing operation.
According to one implementation, the apparatus may include an upper cap and a lower cap placed at either sides of the workpiece and tightly fixed thereon, configured to retain the abrasive medium inside the opening, and the upper cap is configured with a central opening for the central shaft to pass through.
In an aspect, the stirrer and the upper and lower caps may be coaxially placed around the longitudinal axis of the workpiece without any eccentricity.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the present application, it is believed that the application will be better understood from the following description taken in conjunction with the accompanying DRAWINGS, where like reference numerals designate like structural and other elements, in which:
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of exemplary embodiment of the present disclosure. However, it will be apparent to those skilled in the art that these specific details are not required to practice exemplary embodiments of the present disclosure. Descriptions of specific applications are provided only as representative examples. Various modifications to the exemplary implementations may be readily apparent to one skilled in the art, and the general principles defined herein may be applied to other implementations and applications without departing from the principles of the exemplar embodiment of the present disclosure. Practices according to concepts disclosed by the present disclosure are not intended to be limited to the implementations shown, are to be accorded the widest possible scope consistent with the principles and features disclosed herein.
Disclosed methods and devices herein are directed to a precise finishing of an inner surface of a workpiece, where the inner surface defines an axially symmetric opening inside the workpiece. The method as described herein may include the steps of: first pouring an abrasive medium inside the opening; imposing a centrifugal force on the abrasive medium to accelerate the abrasive medium outwards from the center of rotation towards the inner surface of the opening, where the abrasive medium impacts the inner surface and performs the surface finishing with a micro/nanometric precision. In an implementation, the abrasive medium may be a medium of abrasive nanoparticles.
In an aspect, a stirrer may be used to urge a medium of abrasive nanoparticles that may be poured inside the opening of the workpiece to rotate about the longitudinal axis of the workpiece. This rotational movement may exert a centrifugal force on the abrasive nanoparticles and may accelerate them towards the inner surface of the opening inside the workpiece. The abrasive nanoparticles strike against the inner surface of the workpiece and perform the finishing act. The workpiece itself may rotate about the longitudinal axis of the workpiece in a direction opposite to that of the abrasive nanoparticles.
In some implementations, a rotary actuating mechanism, for example a combination of an electro motor and a gear-box system or a direct drive motor, may be utilized to drive the rotational movement of the stirrer. The stirrer may include a central shaft on which a number of radially extending blades may be attached. The stirrer may be disposed inside the opening and the abrasive medium may be poured between the blades of the stirrer. The rotary actuating mechanism may be coupled with the longitudinal axis of the stirrer and it may be configured to drive a rotational movement of the stirrer. The rotational movement of the stirrer forces the abrasive medium to rotate accordingly. Concurrently, another rotary actuator may be utilized to drive a rotational movement of the workpiece in a direction opposite that of the abrasive medium. To this end, in an implementation, the workpiece may be positioned inside a fixture and be rotatable therewith. The fixture may be coupled to the rotary actuating mechanism and the rotary actuating mechanism may drive the rotational movement of the fixture. In an implementation, the fixture may be designed according to the shape of the workpiece. According to some implementations, there may be a working gap between the stirrer blades and the inner surface of the workpiece.
The opposite direction rotation of the workpiece and the abrasive medium may lead to the abrasive nano-particles to rotate with higher relative velocity that may cause a faster, more precise and cost-efficient finishing. Since nanoparticles are used in the abrasive medium, the surface finishing may be performed with an accuracy in the order of nanometers. In order to facilitate the mounting of the workpiece, the apparatus may be designed in two upper and lower segments mounted vertically, in which the bottom segment is configured to locate the workpiece and the other one is also designed to hold and rotate the stirrer. The workpiece is rotatably mounted on the fixture, and the stirrer is mounted on the upper segment of the apparatus, and rotatable therewith.
Referring to
Referring to
Referring to
It is also possible for the apparatus to design in other configurations. For example the apparatus may be configured in the horizontal direction, which forces the workpiece to place horizontally requiring higher centrifugal forces, which also necessitate a higher rotational speeds.
In an aspect, the higher speed of the rotational movements of nano-particles abrasive medium 114 may allow for the finishing process to be performed more efficiently and increases material removal rate and surface quality, compared with other nano-finishing methods, in which the workpiece has no motion.
Referring to
The stirrer 106 is not limited in terms of material, and can be made out of metal, plastic, wood and so on, which can be considered as an advantage, resulting in reduced manufacturing cost, while some of limitations of the other nano-finishing procedures can be eliminated such as lower material removal rate, being a time-consuming process and limitations associated with pressure, current and voltage and so on. In addition, the possibility of employing different stirrings with different geometries and sizes can eliminate limitations associated with finishing of some of special parts with cavities and large-diameter parts.
Referring to
Referring to
This application claims the benefit of priority from pending U.S. Provisional Patent Application No. 62/297,958, filed on Feb. 23, 2016, and entitled “ROTATIONAL ABRASIVE MICRO/NANO-FINISHING APPARATUS,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6688953 | Kawasaki | Feb 2004 | B2 |
6905395 | Walch | Jun 2005 | B2 |
6962522 | Kawasaki | Nov 2005 | B1 |
20140220869 | Tzeng | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
100546764 | Oct 2009 | CN |
102501179 | Sep 2013 | CN |
2699DEL2011 | Oct 2011 | IN |
100257847 | Jun 2000 | KR |
Entry |
---|
Mamilla Ravi Sankar, Experimental investigations into rotating workpiece abrasive flow finishing, Wear , Nov. 2008, vol. 267, pp. 43-51. |
Mamilla Ravi Sankar, Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography, International Journal of Machine Tools & Manufacture, Mar. 2010, vol. 50, pp. 637-650. |
R. S. Walia, Morphology and integrity of surfaces finished by centrifugal force assisted abrasive flow machining, Journal of advance manufacturing technology, Dec. 2007, vol. 39, pp. 1171-1179. |
V.K. Jain, Magnetic field assisted abrasive based micro-/nano-finishing, Journal of Materials Processing Technology , 2009, vol. 209, pp. 6022-6038. |
Biing-Hwa Yan, Finishing effects of spiral polishing method on micro lapping surface, International Journal of Machine Tools & Manufacture, Oct. 2006, vol. 47, pp. 920-926. |
Number | Date | Country | |
---|---|---|---|
20170043447 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62297958 | Feb 2016 | US |