Embodiments disclosed herein relate in general to actuating mechanisms (“actuators”) and in particular to voice coil motor (VCM) actuators for digital cameras.
High-end digital camera modules, and specifically cellphone (e.g. smartphone) digital cameras include mechanisms that enable advanced optical function such as focus or optical image stabilization (OIS). Such mechanisms may actuate (e.g. displace, shift or tilt) an optical element (e.g. lens, image sensor, mirror) to create the desired optical function. A commonly used actuator is based on voice coil motor (VCM) technology. In VCM technology, a fixed (or permanent) magnet and a coil are used to create actuation force. The coil is positioned in the vicinity of the magnetic field of the fixed magnet. Upon driving current in the coil, a Lorentz force is created on the coil, an in return an equal counter-force is applied on the magnet. The magnet or the coil is rigidly attached to an optical element to construct an actuated assembly. The actuated assembly is then moved by the magnetic Lorenz force. Henceforth, the term VCM may be used to also refer to “VCM actuator”.
In addition to the magnetic force, a mechanical rail is used to set the course of motion for the optical element. The mechanical rail keeps the motion of the optical element in a desired path, as required by optical needs. A typical mechanical rail is known in the art as “spring-guided rail”, in which a spring or set of springs is used to set the motion direction. A VCM that includes a spring-guided rail is referred to as “spring-guided VCM”. For example, US patent application 20110235196 discloses a lens element being shifted in a linear spring rail to create focus. For example, international patent application PCT/IB2016/052179 discloses the incorporation and use of a spring guided VCM in a folded camera structure (FCS). The disclosure teaches a lens element being shifted to create focus and OIS and a light folding element being shifted in a rotational manner to create OIS.
Another typical mechanical rail is known in the art a “ball-guided rail”, see e.g. U.S. Pat. No. 8,810,714. With a ball-guided rail, the optical element is bound to move in the desired direction by set of balls confined in a groove (also referred to as “slit”). A VCM that includes a ball-guided rail is referred to as a “ball-guided VCM”. A ball-guided VCM has several advantages over a spring-guided VCM. These include: (1) lower power consumption, because in a spring-guided VCM the magnetic force has to oppose a spring mechanical force, which does not exist in a ball-guided VCM, and (2) higher reliability in drops which may occur during the life-cycle of a camera that includes the VCM.
While the actuation method showed in U.S. Pat. No. 8,810,714 allows linear motion only, in some cases there is a need to create angular motion as well, for example to rotate (tilt) a light folding element (mirror or prism) in order to create OIS as described in PCT/IB2016/052179. Therefore there is a need for, and it would be advantageous to have, a rotational ball-guided VCM, i.e. a ball-guided VCM that can cause rotation (tilt) of an optical element.
Aspects of embodiments disclosed herein relate to VCM actuators having curved ball-guided mechanisms, and to digital cameras, and in particular cameras with folded optics that incorporate VCMs.
In some exemplary embodiments there is provided an actuator for rotating or tilting an optical element, comprising a first VCM and a first curved ball-guided mechanism operative to create a rotation or tilt movement of the optical element around a first rotation axis upon actuation by the VCM.
In an embodiment, the first VCM includes a coil mechanically coupled to a static base and a fixed magnet mechanically coupled to a holder for holding the optical element, and the rotation or tilt movement is created by a current passing through the coil.
In an embodiment, an actuator further comprises a ferromagnetic yoke attached to the static base and used to pull the fixed magnet in order to prevent the first curved ball-guided mechanism from coming apart.
In an embodiment, the first ball-guided mechanism includes a pair of grooves having a plurality of balls located therebetween, wherein at least one of the grooves in the pair has a curvature defined by a radius that starts at a center of curvature which lies on the rotation axis.
In an embodiment, the optical element includes an optical path folding element (OPFE) that folds light from a first optical axis to a second optical axis. The OPFE may be exemplarily a prism or a mirror.
In an embodiment, the first rotation axis includes an axis perpendicular to both the first optical axis and the second optical axis.
In an embodiment, the first rotation axis includes an axis combining the second optical axis and an axis perpendicular to both the first optical axis and the second optical axis.
In an embodiment, the first curved ball-guided mechanism is positioned below the OPFE.
In an embodiment, the fixed magnet and the coil are positioned below the OPFE.
In an embodiment, the fixed magnet and the coil are positioned on a side of the OPFE in a plane parallel to a plane that includes both the first axis and the second optical axis.
In an embodiment, an actuator further comprises a position sensor for measuring an angle of the optical element relative to the static base.
In an embodiment, the position sensor is a Hall bar position sensor operative to measure the magnetic field of the fixed magnet.
In some embodiments, an actuator further comprises a second VCM and a second curved ball-guided mechanism operative to create a rotation or tilt movement of the optical element around a second rotation axis upon actuation by the second VCM. wherein the first rotation axis and the second rotation axis are not parallel.
In an embodiment, the first rotation axis and the second rotation axis are substantially orthogonal to each other.
In an embodiment, the first VCM includes a first coil mechanically coupled to a static base and a first fixed magnet mechanically coupled to a holder for holding the optical element, wherein the second VCM includes a second coil mechanically coupled to a static base and a second fixed magnet mechanically coupled to a holder for holding the optical element, and wherein the first rotation or tilt movement and the second rotation or tilt movement are created by a combination of currents passing through the first coil and the second coil.
In an embodiment, the first and second magnets are unified as a single magnet.
In an embodiment, an actuator further comprises a ferromagnetic yoke attached to the static base and used to pull the fixed magnet in order to prevent the first curved ball-guided mechanism and the second curved ball-guided mechanism from coming apart.
In an embodiment, the optical element includes an optical path folding element (OPFE) that folds light from a first optical axis to a second optical axis.
In an embodiment, the first rotation axis includes an axis perpendicular to both the first optical axis and the second optical axis, and the second rotation axis includes an axis parallel to either the first optical axis or the second optical axis
In an embodiment, an actuator further comprises a first position sensor and a second position sensor, wherein a combination of two position measurements allows determination of the position of the optical element holder relative to the static base with respect to both the first rotation axis and the second rotation axis.
In an embodiment, the center of curvature resides inside the optical element.
In an embodiment, the center of curvature resides outside the optical element.
In some exemplary embodiments, there are provides cameras comprising an actuator described above and below.
In some camera embodiments, the rotation or tilt movement is for allowing optical image stabilization.
In some camera embodiments, the rotation or tilt movement is for allowing extended field of view scanning.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.
In actuator 100, OPFE 150 may be held in an optical element holder 102, which can be made, for example, by a plastic mold that fits the shape of element OPFE 150. A permanent (fixed) magnet 104 is fixedly attached (e.g. glued) to optical element holder 102 from below (negative Z direction in the
The distance of axis 108 from grooves 102a and 102b (radius of curvature) is typically 2-15 mm. As such axis 108 may pass through (be internal to) OPFE 150 or outside of (be external to) OPFE 150, see also
Actuator 100 further includes a base 110, typically made of plastic. Base 110 is also molded with two arc-shaped grooves 110a and 110b positioned at two opposite sides of base 110, each arc-shaped groove (110a and 110b) having an angle α″>α. Angle α″ is also shown in
Since optical element holder 102 and base 110 are preferably plastic-molded (although they may also be made of aluminum or other metals) there is some tolerance allowed in part dimensions, typically up to a few tens of microns for each dimension. This tolerance may lead to misalignment of position between adjacent grooves 102a-110a and/or 102b-110b. In the embodiment shown and for better alignment, grooves 102a, 110a and 110b have what is known in the art as a (non-limiting) ‘V’-groove cross-section shape to match the balls, while groove 102b has a cross-section which is wider and has a (non-limiting) ‘trapezoid’ cross-section. Grooves 102a and 110a are then aligned during assembly, while grooves 102b and 110b have some alignment freedom allowed by the trapezoid cross section. In other embodiments, all grooves (102a, 102b, 110a, and 110b) may have a V-shape.
In actuator 100, three balls 112a, 114a and 116a are positioned in the space between grooves 102a and 110a and three balls 112b, 114b and 116b are positioned in the space between grooves 102b and 110b. The number of balls (here 3) is exemplary. In other embodiments, a disclosed VCM actuator may have more or less of three balls (e.g. 2-7 balls) in the space between adjacent grooves. The balls are typically made of Alumina or another ceramic material, but may also be made of metal, plastic or other materials. The balls have a typical diameter in the range of 0.3-1 mm. Note that in actuator 100, a distance L between grooves 102a,b and grooves 110a,b (and their respective sets of balls) is larger than a width W of OPFE 150, such that the grooves and balls are “outside” of OPFE 150 with respect to the X axis.
In actuator 100, grooves 102a, 102b, 110a, 110b and balls 112a, 112b, 114a, 114b, 116a and 116b form a curved ball-guided mechanism 160 operative to impart a rotation or tilt movement to an optical element (e.g. OPFE 150) upon actuation by the VCM actuator (see
In some embodiments, two different ball sizes may be used to provide smoother motion. The balls can be divided into a large diameter (LD) group and a small diameter (SD) group. The balls in each group have the same diameter. LD balls may have for example a 0.1-0.3 mm larger diameter than SD balls. A SD ball may be positioned between two LD balls to maintain the rolling ability of the mechanism. For example, in an embodiment, balls 112a and 116a may be LD balls and ball 114a may be a SD ball.
A metallic ferromagnetic yoke 118 is fixedly attached (e.g. glued) to base 110 from below (negative Z direction in the
Actuator 100 further includes an EM sub-assembly 120,
While magnetic force applied by the electro-magnetic sub-assembly is in the positive and negative Y directions, the rail formed by the balls and grooves cause confined actuated sub-assembly 104 to move along an arc parallel to grooves 102a, 102b, 110a and 110b. Hall bar element 124 can sense the intensity and direction of the magnetic field of magnet 104. Upon actuation, the relative position of actuated sub-assembly 106 and Hall bar element 124 is changed. The intensity and direction of the magnetic field sensed by Hall bar element 124 change as well, and thus the position of actuated sub-assembly 106 can be determined.
A control circuit is used to control the position of the actuated sub-assembly and to set it to the position required by optical demands. The control circuit input is a signal from Hall bar element 124 and the output is the amount of current applied in coil 122. The control circuit may be implemented in an integrated circuit (IC). In some cases the IC may be combined with Hall element 124. In other cases, the IC may be a separate chip (not shown), which can be located outside of actuator 100 and of a camera including actuator 100 (e.g. see below embodiment 200).
The shape of the grooves in a curved ball-guided mechanism disclosed in actuators 100 and 100′ is exemplary, and other shapes are possible, as indicated in
Folded camera 200 may further be coupled to or include actuation mechanisms to actuate lens element 204 for AF and\or OIS, for example described in PCT/IB2016/052179. The actuation mechanisms (and actuations) of lens 204 are independent of those of actuator 100 and are not shown in
Optical element holder 302 includes (e.g. is molded with) two parallel arc-shaped grooves 302a and 302b positioned at two opposite sides of holder 302, each arc-shaped groove having an angle β′>β, where angle β is a required rotational stroke, as defined by optical needs. Angles β′ and β″ are not shown, but its definition is similar to that of angles α′ and α″ in
Actuator 300 further includes a middle base 310, typically made of plastic. Middle base 310 is also molded with two grooves 310a and 310b. Top-actuated sub-assembly 306 is positioned inside middle base 310 such that grooves 310a and 310b are parallel to grooves 302a and 302b respectively. In this embodiment, grooves 302b, 310a and 310b have V-groove shape, while groove 302a has a trapezoid shape; the considerations for these shapes was given above in the description of actuator 100. Three balls 312a, 314a and 316a are positioned between grooves 302a and 310a, and, similarly, three balls 312b, 314b and 316b are positioned between grooves 302b and 310b. In other embodiments, actuator 300 may have more or less than 3 balls in each groove, typically in the range of 2-7 balls. Considerations for size and materials of all balls are similar to those described in actuator 100. Middle base 310 further includes two more arc-shaped grooves 310c and 310d on a single circle 320, as seen in
Actuator 300 further includes a bottom base 308. Bottom base 308 is typically made of plastic, and is molded with two arc-shaped grooves 308c and 308d. Arc-shaped grooves 308c and 308d are on circle 320 with a center on an axis 321, as can be seen in
A metallic yoke 318 is fixedly attached (e.g. glued) to bottom base 308 from below, such that it faces magnet 304. Metallic yoke 318 pulls magnet 304 (and thus pulls top actuated sub-assembly 306) by magnetic force and thus holds the two curved ball-guided mechanisms (360 and 362) from coming apart. The magnetic force is in direction marked in
Actuator 300 further includes an electro-magnetic sub-assembly 330, shown in
While the magnetic force applied by both of the coils 322 and 324 of electro-magnetic sub-assembly is in the positive and negative Y directions, top actuated sub-assembly 306 is confined by the first curved ball-guided mechanism to move along an arc parallel to grooves 302a, 302b, 310a and 310b (i.e. rotate around the X axis). Similarly bottom actuated sub-assembly 334 is confined by the second curved ball-guided mechanism to move around circle 320 (i.e. rotate around the Z axis), and its motion is dominated by the net torque around Z axis applied by coils 322 and 324 around axis 321 (the difference between the torque around Z axis each of the coils applies). Hall bar elements 326, 328 can sense the intensity and direction of the magnetic field of magnet 304. Upon actuation, the position of top actuated sub-assembly 306, bottom actuated sub-assembly 334 and Hall bar elements 326, 328 is changed, and with it changes the intensity and direction of the magnetic field sensed. We mark with VHB-326 and VHB-328 the Hall output voltage of both sensors, which is proportional to the magnetic field sensed by each Hall sensor, as known in the art. Thus, the amount of rotation of top actuated sub-assembly 306 and bottom actuated sub-assembly 334 can be determined. In an example, the sum VHB-326+VHB-328 is proportional to the amount of tilt around the first rotation axis and the difference VHB-326−VHB-328 is proportional to the amount of tilt around the second rotation axis. A control circuit is used to control the position of the actuated sub-assembly and to set it to the position required by optical demands. The control circuit input includes signals of Hall bar elements 326, 328 and the output includes the amount of current applied in coils 322, 324. The control circuit may be implemented in an integrated circuit (IC). In some cases, the IC may be combined with one of Hall elements 326, 328. In other cases, the IC is a separate chip, which can be located outside of the camera (not shown).
In actuator 500, OPFE 550 is held in an OPFE holder 502, which can be made, for example by plastic mold, fitting the shape of OPFE 550. An actuation magnet 504 and a sensing magnet 506 are fixedly attached (e.g. glued) to optical element holder 502 from the side, in the same direction as an axis of rotation of OPFE 550 (the negative X direction in the figures). The assembly of OPFE 550, optical element holder 502 and magnets 504, 506 is referred to as “actuated sub-assembly” 510, shown from the side in
Actuator 500 further includes a sidewall 514. Sidewall 514 is a stationary part and is fixed rigidly to the actuator frame (not shown) and to the camera image sensor. Sidewall 514 is typically made of plastic. In some embodiments, sidewall 514 may be a part of the entire actuator's frame (known in the art as ‘base’). Sidewall 514 may be molded as a single piece of plastic which serves for the purposes described below, as well as other purposes needed for the camera which actuator 500 is part of (e.g. holding the lens or holding the image sensor). Sidewall 514 is also molded with two arc-shaped grooves 514a and 514b. Actuated sub-assembly 510 is positioned alongside sidewall 514 such that grooves 514a and 514b are parallel to grooves 502a and 502b respectively. In this embodiment grooves 502b, 514a and 514b have V-groove shape, while groove 502a has a trapezoid shape; the considerations for these shapes was given above in the description of actuator 100.
Three balls 512a, 514a and 516a are positioned between grooves 502a and 514a, and, similarly, three balls 512b, 514b and 516b are positioned between grooves 502b and 514b. In other embodiments, actuator 500 may have more or less than 3 balls in each groove, typically in the range of 2-7 balls. Consideration for size and materials of all balls is similar to the described in actuator 100. The two pairs of grooves and their associated balls form a curved ball-guided mechanism 560 of actuator 500.
A metallic ferromagnetic yoke 518 is fixedly attached (e.g. glued) to sidewall 514 from a side opposite to those of magnets 504, 506 such that it faces magnet 504. Yoke 518 pulls magnet 504 (and thus pulls the actuated sub-assembly 510) by magnetic force and thus holds the curved ball-guided mechanism from coming apart. The magnetic force is in direction marked in
Actuator 500 further includes an electro-magnetic sub-assembly 530, shown in
As for actuated sub-assemblies above, while the magnetic force applied by the electro-magnetic sub-assembly is in the positive and negative Y directions, the rail created by the balls and grooves create a confinement for actuated sub-assembly 510 to move along an arc parallel to grooves 502a, 502b, 514a and 110b. Hall bar element 524 can sense the intensity and direction of the magnetic field of sensing magnet 506. Upon actuation, the relative position of actuated sub-assembly 510 and Hall bar element 524 is changed. The intensity and direction of the magnetic field senses by Hall bar element 524 changes as well and thus the position of actuated sub-assembly 510 can be determined.
A control circuit is used to control the position of the actuated sub-assembly and set to the position required by optical demands. The control circuit input is a signal from Hall bar element 524 and the output is the amount of current applied in coil 522. The control circuit may be implemented in an IC. In some cases, the IC may be combined with Hall element 524. In other cases, it is a separate chip, which can be located outside of the camera (not shown).
In some embodiments, the sensing magnet 506 can be removed and the Hall bar element 524 can be placed in the center of the coil so the actuation magnet 504 can be used for both actuation and sensing (as described for example above with reference to
In some embodiments, sensing magnet 506 and actuation magnet 504 may be combined into one magnet with the suitable magnetization to allow the sensing and actuating functionality described above.
Any of the actuators disclosed above may be included in a folded camera which in turn may be included together with an upright (non-folded) camera in a dual-aperture camera with folded lens, for example as described in co-owned U.S. Pat. No. 9,392,188.
While this disclosure describes a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of such embodiments may be made. In general, the disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
All references mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual reference was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present application.
This application is a continuation application from U.S. patent application Ser. No. 17/367,382 filed Jul. 4, 2021 (now allowed), which was a continuation application from U.S. patent application Ser. No. 16/154,093 filed Oct. 8, 2018 (issued as U.S. Pat. No. 11,150,447), which was a continuation application from U.S. patent application Ser. No. 15/559,039 filed Sep. 16, 2017 (issued as U.S. Pat. No. 10,488,631), which was a 371 National Phase application from international application PCT/IB2017/052383 filed Apr. 25, 2017, and claims priority from US Provisional Patent Applications No. 62/343,011 filed May 30, 2016 and 62/353,278 filed Jun. 22, 2016, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3085354 | Rasmussen et al. | Apr 1963 | A |
3584513 | Gates | Jun 1971 | A |
3941001 | LaSarge | Mar 1976 | A |
4199785 | McCullough et al. | Apr 1980 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5502537 | Utagawa | Mar 1996 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5892855 | Kakinami et al. | Apr 1999 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6201533 | Rosenberg et al. | Mar 2001 | B1 |
6208765 | Bergen | Mar 2001 | B1 |
6211668 | Duesler et al. | Apr 2001 | B1 |
6215299 | Reynolds et al. | Apr 2001 | B1 |
6222359 | Duesler et al. | Apr 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7619683 | Davis | Nov 2009 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8752969 | Kane et al. | Jun 2014 | B1 |
8803990 | Smith | Aug 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay et al. | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020054214 | Yoshikawa | May 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030156751 | Lee et al. | Aug 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040239313 | Godkin | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050134697 | Mikkonen et al. | Jun 2005 | A1 |
20050141390 | Lee et al. | Jun 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20050248667 | Schweng et al. | Nov 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060126737 | Boice et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060181619 | Liow et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070127040 | Davidovici | Jun 2007 | A1 |
20070159344 | Kisacanin | Jul 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080088942 | Seo | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090102948 | Scherling | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090168135 | Yu et al. | Jul 2009 | A1 |
20090200451 | Conners | Aug 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090234542 | Orlewski | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100134621 | Namkoong et al. | Jun 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100202068 | Ito | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100246024 | Aoki et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100265331 | Tanaka | Oct 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110121666 | Park et al. | May 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110285714 | Swic et al. | Nov 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120014682 | David et al. | Jan 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130148215 | Mori et al. | Jun 2013 | A1 |
20130148854 | Wang et al. | Jun 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130163085 | Lim et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130229544 | Bando | Sep 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-LaCroix | Oct 2013 | A1 |
20130258048 | Wang et al. | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130286221 | Shechtman et al. | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140160311 | Hwang et al. | Jun 2014 | A1 |
20140192224 | Laroia | Jul 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20140376090 | Terajima | Dec 2014 | A1 |
20140379103 | Ishikawa et al. | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150002684 | Kuchiki | Jan 2015 | A1 |
20150042870 | Chan et al. | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150110345 | Weichselbaum | Apr 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150145965 | Livyatan et al. | May 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150198464 | El Alami | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150296112 | Park et al. | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160154066 | Hioka et al. | Jun 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160238834 | Erlich et al. | Aug 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160301868 | Acharya et al. | Oct 2016 | A1 |
20160342095 | Bieling et al. | Nov 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20160381289 | Kim et al. | Dec 2016 | A1 |
20170001577 | Seagraves et al. | Jan 2017 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170124987 | Kim et al. | May 2017 | A1 |
20170150061 | Shabtay et al. | May 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170219749 | Hou et al. | Aug 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170276954 | Bajorins et al. | Sep 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20180013944 | Evans, V et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg et al. | Jan 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180109660 | Yoon et al. | Apr 2018 | A1 |
20180109710 | Lee et al. | Apr 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180184010 | Cohen et al. | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20180329281 | Ye | Nov 2018 | A1 |
20180368656 | Austin et al. | Dec 2018 | A1 |
20190100156 | Chung et al. | Apr 2019 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190130822 | Jung et al. | May 2019 | A1 |
20190213712 | Ashdan et al. | Jul 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190222758 | Goldenberg et al. | Jul 2019 | A1 |
20190228562 | Song | Jul 2019 | A1 |
20190297238 | Klosterman | Sep 2019 | A1 |
20200103726 | Shabtay et al. | Apr 2020 | A1 |
20200104034 | Lee et al. | Apr 2020 | A1 |
20200134848 | El-Khamy et al. | Apr 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200264403 | Bachar et al. | Aug 2020 | A1 |
20200389580 | Kodama et al. | Dec 2020 | A1 |
20210180989 | Fukumura et al. | Jun 2021 | A1 |
20210333521 | Yedid et al. | Oct 2021 | A9 |
20220252963 | Shabtay et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102215373 | Oct 2011 | CN |
102739949 | Oct 2012 | CN |
102982518 | Mar 2013 | CN |
103024272 | Apr 2013 | CN |
203406908 | Jan 2014 | CN |
103841404 | Jun 2014 | CN |
205301703 | Jun 2016 | CN |
105827903 | Aug 2016 | CN |
105847662 | Aug 2016 | CN |
107608052 | Jan 2018 | CN |
107682489 | Feb 2018 | CN |
109729266 | May 2019 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S59191146 | Oct 1984 | JP |
04211230 | Aug 1992 | JP |
H07318864 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2003304024 | Oct 2003 | JP |
2004056779 | Feb 2004 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2005099265 | Apr 2005 | JP |
2005122084 | May 2005 | JP |
2005321592 | Nov 2005 | JP |
2006237914 | Sep 2006 | JP |
2006238325 | Sep 2006 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2008271026 | Nov 2008 | JP |
2010204341 | Sep 2010 | JP |
2011055246 | Mar 2011 | JP |
2011085666 | Apr 2011 | JP |
2011138407 | Jul 2011 | JP |
2011203283 | Oct 2011 | JP |
2012132739 | Jul 2012 | JP |
2013101213 | May 2013 | JP |
2013106289 | May 2013 | JP |
2016105577 | Jun 2016 | JP |
2017146440 | Aug 2017 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20100008936 | Jan 2010 | KR |
20110080590 | Jul 2011 | KR |
20130104764 | Sep 2013 | KR |
1020130135805 | Nov 2013 | KR |
20140014787 | Feb 2014 | KR |
101428042 | Aug 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
20170105236 | Sep 2017 | KR |
20180120894 | Nov 2018 | KR |
20130085116 | Jun 2019 | KR |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7 μm Pixels in 0.11 μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20230288678 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
62353278 | Jun 2016 | US | |
62343011 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17367382 | Jul 2021 | US |
Child | 18309814 | US | |
Parent | 16154093 | Oct 2018 | US |
Child | 17367382 | US | |
Parent | 15559039 | US | |
Child | 16154093 | US |