The invention relates to a rotational movement damper having an outer sleeve and an axle which fits in the outer sleeve and is mounted to rotate in the outer sleeve.
Rotational movement dampers are frequently used, for example together with arbitrarily moved construction parts, which, upon their use, are pivoted from a rest position into an operating position and which spring back out of this operating position when the operating sequence is finished. This may be about glove compartments in motor vehicles or handle grip which are to facilitate the boarding and which are moved into an operating position upon gripping the same, from which position they than swing back into their rest position under spring tension. This swinging-back should happen in a delayed fashion among others because of avoiding hard noises, and it should also be dampened with respect to its rotational movements, for which purpose already rotational movement dampers are used which, on the one hand, allow an easy movement from the rest position into the operating position and which swing back out of the operating position, however, with a dampened movement. These movement dampers usually operate with some kind of fluid which may be constricted with respect to its fluid flow and, thereby, causes the function as rotational movement damper.
It is the object of the present invention to design the construction of such rotational movement dampers particularly simple and secure in operation. According to the invention, this is achieved thereby that the axle comprises at least two discoidal flanges with flat flange surfaces and the same diameter, fitting in annular channels in the outer sleeve such that the flanges contact with the planar flange surfaces thereof against the equally planar area of the counter surfaces of the annular channels unaffected by temperature variations and, on counter-rotation of the outer sleeve and axle act as a slipper clutch.
This construction gets by just with two constructional elements connected to each other, i.e. the outer sleeve and the axle supported therein. Therein, the two constructional elements of the movement damper, i.e. the outer sleeve and the axle, adapted to each other such that, upon a mutual rotation of the elements with respect to each other, a more or less substantial friction has to be overcome between the two elements. This results, for the mutual rotation of the two elements with respect to each other, in the effect of a slipper clutch which is able to slip upon going beyond a certain torque, i.e. to allow a rotational movements of the two elements with respect to each other. With respect to the above-mentioned application examples, i.e. a rotatable handle grip, the rotational movement damper of the invention allows the following movement of the handle grip or respectively effects the movement thereof in the following way. Upon the handle grip swinging open fast, both elements of the rotational movement damper slip past each other, i.e. the slipper clutch is slipping through. Upon the subsequent releasing of the handle grip, which usually is rotatably mounted against a spring and always tends to return to its original position under the action of the spring, the spring which causes the swinging-back of the movement damper effects a corresponding movement of the handle grip which is, however, counteracted by the rotational movement damper in that the rotational movement damper, because of its slipper clutch action, delays the back movement of the handle grip caused by the tension of the spring with its friction since the tension of the spring overcomes this friction, and only slowly returns into its rest position whereby the desired movement dampening has occurred. The same effect of the movement damper can naturally also be applied to other constructional elements with respect to which, for a alternating motion, a corresponding rotational movement with respect to the rotational movement damper is effected such that the return movement is correspondingly delayed under the effect of the friction of the slipper clutch.
The slipper clutch action may be achieved in a particularly simple way thereby that, of both constituents of the movement damper (outer sleeve and axle), at least one part consists out of plastics which is adapted to the other part by injection molding. Because of this construction, a direct fitting of the mold fitted part to the other part is automatically obtained and, thereby, also upon rotation of the two parts with respect to each other, a sufficient friction is obtained in order to either cause pulling along upon movement with a low torque or to get into a slipping motion with a higher torque whereby the effect of the slipper clutch is achieved.
The effect of the slipper clutch is further promoted in particular thereby that the head end of the flange is rounded. In this case smaller friction tension peaks at any edges of the flanges with respect to the ring channels are obtained such that the effect of the friction is concentrated essentially to the flat flange surfaces and the counter surfaces of the ring channels.
An embodiment of the invention is shown in the figures.
The movement damper 1 shown in
The combination of the outer sleeve 2 and the axle 3 with the hexagonal bolt 4 is clearly to be taken from
In
As can be seen from
Because of the design of the flanges 7 and 8 with their flat flange surfaces 9/10 and 9′/10′ and the same diameter of the flanges 7 and 8, upon cooling down of the outer sleeve 2, a contraction of the material of the outer sleeve 2 between the two flanges 7 and 8, and, thereby, a pressure onto the flat flange surfaces 9 and 10′ facing to the outside of the flanges 7 and 8 upon simultaneous contraction of the facing, flat, inner surfaces 10 and 9′ of the two flanges 7 and 8 is resulting, wherein these effects are compensating each other and practically no friction change between the outer sleeve 2 and the axle 3 is coming up. However, if the material of the outer sleeve 2 expands due to rising temperature, a corresponding pressure to the inner flange surfaces 9′ and 10 of both of the flanges 7 and 8 is build up between both of the flanges 7 and 8. However, since this has only a slight effect on the side of their outer flange surfaces 9 and 10′ because of the unrestricted expansion of the material of the outer sleeve, the expansion remains predominately in the intermediate space between both of the flanges 7 and 8 such that, also in this case, the amount of the mentioned frictional forces remains nearly constant. In any case, it has been proven in practice that a temperature change effecting the plastics material of the outer sleeve 2 has practically no effect with respect to the slipper coupling action because of the shown arrangement of the axle 3 with both of the flanges 7 and 8.
In
In
In
In both
Number | Date | Country | Kind |
---|---|---|---|
10 2008 048 320 | Sep 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/006799 | 9/21/2009 | WO | 00 | 6/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/031583 | 3/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1442022 | Brooks | Jan 1923 | A |
1685497 | Martin | Sep 1928 | A |
1761870 | Causan | Jun 1930 | A |
2429561 | Miller | Oct 1947 | A |
2606431 | Elgin | Aug 1952 | A |
2977779 | Steinke et al. | Apr 1961 | A |
3232597 | Gaydecki | Feb 1966 | A |
3396557 | Moores, Jr. | Aug 1968 | A |
4083060 | Lange | Apr 1978 | A |
5605208 | Friedrichsen et al. | Feb 1997 | A |
5865278 | Wagner | Feb 1999 | A |
6129186 | Blake, III | Oct 2000 | A |
Number | Date | Country |
---|---|---|
1982094 | Mar 1968 | DE |
2531903 | Feb 1977 | DE |
2700812 | Jul 1978 | DE |
3423726 | Mar 1985 | DE |
9420646 | Feb 1995 | DE |
19611725 | Nov 1997 | DE |
19915848 | Oct 1999 | DE |
20108894 | Oct 2001 | DE |
69908753 | Apr 2004 | DE |
102008015018 | Sep 2009 | DE |
1365805 | Jul 1964 | FR |
2147686 | May 1985 | GB |
Number | Date | Country | |
---|---|---|---|
20110233012 A1 | Sep 2011 | US |