The present invention relates to a rotational operation type switch wherein it is possible to switch a switching contact by rotationally operating an operation button, or it is possible to obtain signals different from one rotation position to another.
A rotational operation type switch 50 shown in
The rotary knob 52 is structured so as to be rotationally operable by inserting an operation key 60 therein in order to prevent an unintended rotational operation.
When operating the rotational operation type switch 50 structured in this way, the operation key 60 is inserted into the rotary knob 52, and the key 60 is rotationally operated in a right or left direction. The rotary knob 52 rotates with the rotation of the key 60, in conjunction with which the rotating cylinder 55 and the cylindrical cam 56 rotate. The push bar 58 is moved up and down in response to a change in position of the cam surface by the rotation of the cylindrical cam 56, and a contact mechanism 59 of the contact unit 57 is driven by the lower end of the push bar 58, thus switching (on and off) the contact.
This kind of heretofore known rotational operation type switch is formed such that the contact of the contact unit 57 can be switched by rotationally operating the rotary knob 52, but is structured by the contact unit and an operation mechanism which operates the contact unit being completely unitized and linked to each other in an axial direction. Therefore, there is the problem of an inevitable increase in the depth dimension of the switch from the operation surface of the switch. Also, when structuring the switch as a rotary selector switch, it is necessary to annex a number of contact mechanisms corresponding to the number of contact mechanisms to be selected, meaning that there is also the problem of an increase in the price of the switch as well as an increase in the overall size of the switch.
PTL 1: Japanese Patent No. 3,936,433
The invention, in order to solve the heretofore described problems of the heretofore known rotational operation type switch, has an object to provide a thin, miniature, and inexpensive rotational operation type switch, which is small in depth dimension from the operation surface of the switch, wherein it is possible to switch a switching contact mechanism by rotationally operating an operation button.
The invention, in order to achieve the heretofore described object, is provided with a rotational operation button supported on a frame so as to be rotationally operable; and one switching contact mechanism disposed below the operation button to face the operation button. In the switch, an operation mechanism, including a cam, which operates and switches the switching contact mechanism in conjunction with the rotational operation of the operation button, is provided between the operation button and the switching contact mechanism.
In the invention, the switching operation mechanism can be structured so as to operate and switch (on and off) the switching contact mechanism once for each rotation of the operation button through a predetermined rotation angle, and operate and switch (on and off) the switching contact mechanism for a plurality of times for one revolution of the operation button.
It is preferable that the switching contact mechanism includes a plurality of fixed contact electrodes, disposed on a printed circuit board so as to be spaced for a predetermined distance away from each other, and a disc spring shaped movable contact, disposed bridging between the plurality of fixed contact electrodes, which changes in shape by being pressed, and contacts to and separate from the fixed contact electrodes, thus switching the electrical connection between the fixed contact electrodes.
It is preferable that the operation mechanism includes an annular cam, of which a cam surface undulating in a circumferential direction is formed in the rear surface of the operation button so as to face the switching contact mechanism, and a push bar which, by being urged by a spring, brings one end face into abutment with the cam surface and operates the switching contact mechanism with the other end face.
Also, a plurality of engagement holes which engages a locking member is provided on the rear surface of the operation button, one for each predetermined rotation angle, and a locking member holding portion which holds the locking member via a spring is provided in one position on the frame which can engage the engagement holes of the operation button, thus enabling a range of rotation to be easily confirmed.
Furthermore, finger-hook holes are provided on the front surface of the operation button, one for each of rotation angles corresponding to those of the engagement holes, thus enabling the operation button to be easily rotationally operated.
Also, a switching contact mechanism switching detection circuit which counts the number of times to switch the switching contact mechanism is connected to the switching contact mechanism, thus distinguishing the rotational operation amounts of the operation button.
The rotational operation type switch of the invention, as it is formed from a rotationally operable operation button supported on a frame, one switching contact mechanism, which is disposed facing the lower surface of the operation button, and an operation mechanism, including a rotary cam, which operates and switches the switching contact mechanism in conjunction with the rotational operation of the operation button, can be made thin and miniature.
Embodiments according to the invention will be described in detail with reference to the drawings.
In
An operation section 10 is structured by inserting an operation button 12 into the upper frame 11a of the main body frame 11 via a packing 13 for preventing dust or water from intruding from the external. The operation button 12 inserted in the upper frame 11a is joined onto the upper frame 11a by engaging an engagement piece 12f of the operation button 12 with one portion of the upper frame 11a. By so doing, the operation button 12 is rotatably supported by the engagement piece 12f without disengaging from the upper frame 11a. Three finger-hook depressed portions 12a, 12b, and 12c are provided on the front surface of the operation button 12 at intervals of a predetermined rotation angle, herein, 120° in order to rotationally operate the operation button 12 with a finger hooked in the depressed portion.
A cylindrical guide 12d is formed protruding on the rear surface side of the operation button 12, and an annular cam surface 12m, formed of an undulating surface continuing in a circumferential direction, is formed on the groove bottom of an annular groove 12e provided in the cylinder of the cylindrical guide 12d (refer to
A push bar 17 formed in a cylindrical shape is loosely fitted in the annular groove 12e on which is formed the annular cam surface 12m of the cylindrical guide 12d on the rear surface side of the operation button 12. One protrusion 17a to abut the annular cam surface 12m of the cylindrical guide 12d is formed on the upper end face of the push bar 17. As the push bar 17 is urged upward from downward by a push bar urging spring 18 in an assembled condition, as shown in
Three locking holes 12h, 12j, and 12k are further provided, at intervals of the same rotation angle (120°) as that of the finger-hook depressed portions 12a, 12b, and 12c, on the rear surface of the operation button 12 in order to reliably keep a predetermined operation position of the operation button. A holding hole 11e for holding a locking member formed from a locking ball 11c and a holding spring 11d which holds the locking ball 11c is provided in a position on the upper frame 11a, which is a rotation angle determination reference, so as to correspond to the locking hole 12h of the operation button 12. When the operation button 12 is rotationally operated, and one of the locking holes 12h, 12j, and 12k of the operation button 12 comes to a position on the upper frame 11 facing the holding hole 11e, the locking ball 11c is pushed into one of the locking holes 12h to 12k by the holding spring 11d, meaning that the operation button 12 is locked in the position.
Meanwhile, a printed circuit board 21, which includes a conductor pattern forming a plurality of fixed contact electrodes 21a and 21b, a circular, disc spring shaped movable contact piece 22, a distance keeping insulating liner 23, a push plate 24, and a protective flexible insulating sheet 25 are inserted in order into the lower frame 11b of the main body frame 11, and disposed, stacked one on another, on the bottom wall of the lower frame 11b, thereby forming a switching contact mechanism 20, as shown in
When mounting the switch 1, assembled in this way, in amounting panel 15 of a control board or the like, as shown in
With the switch 1 of the invention, switching detection means 30 structured from an electronic circuit which detects an electrical connection between the fixed contact electrodes 21a and 21b provided on the printed circuit board 21 is prepared, as shown in
Next, a description will be given, referring to
Herein, a position of the operation button 12 when the finger-hook depressed portion 12a is in the three o'clock position, as shown in
In this condition, as the locking ball 11c is pushed up by the locking spring 11d, the ball 11c fits into the locking hole 12h on the rear surface of the operation button 12, and locks and fixes the operation button 12, thus preventing the operation button 12 from being casually rotated.
Next,
At this time, as the protrusion 17a of the push bar 17 comes to the position (the 60° position in
In an initial position of rotational operation of the operation button 12, as the operation button 12 is in a condition in which the locking ball 11c is in engagement with the locking hole 12h of the operation button 12, it is necessary to rotationally operate the operation button 12 using a little greater force with a fingertip hooked in the finger-hook depressed portion 12a. As the locking ball 11c is pushed in against the urging force of the spring 11d by the inclined surface of the locking hole 12h as a result of the rotational operation, and disengages the locking hole 12h, it is thereafter possible to continue the rotational operation using a small force.
When the operation button 12 is rotated 120°, and the next finger-hook depressed portion 12b rotates to the three o'clock position, the locking ball 11c engages the next locking hole 12j of the operation button 12, and it is possible to reliably lock the operation button 12 in one pitch's worth of rotation position (refer to
The switch 1 is formed such that in this position, the annular cam surface 12m in the cylindrical guide 12d rotates, and the cam surface which is the trough portion in the 120° position in
In this way, when the operation button 12 is rotationally operated one fixed pitch (120°), the switching contact mechanism 20 performs the operation of turning from OFF to ON only once and back to OFF again. When the operation button 12 is rotationally operated two pitches, the switching contact mechanism 20 exhibits on-state twice.
Further, when the operation button 12 is rotationally operated three pitches (operated one revolution), the switching contact mechanism 20 exhibits on-state three times. Therefore, the number of times the switching contact mechanism 20 becomes on-state for every one rotational operation of the operation button 12 is counted by the switching detection means 30, shown in
A comparison of an operation of this kind of rotational operation type switch of the invention with an operation of a heretofore known rotational operation type selector switch is shown in
Each of the two switches can select three operations. Therefore, a heretofore known switch A includes a rotary knob, which enables selection of three positions by being rotationally operated, and three contact circuits 1, 2, and 3.
The heretofore known selector switch is formed such that when a first operation position is selected with the rotary knob, the contact circuit 1 turns on, and the other two contact circuits turn off, as shown in the A column. When a second operation position is selected by rotating the rotary knob, the contact circuit 2 turns on, and the other two contact circuits turn off. Furthermore, when a third operation position is selected by rotating the rotary knob, the contact circuit 3 turns on, and the other two contact circuits turn off.
In contrast, the switch of the invention is similar to the heretofore known selector switch in that three positions are selected by rotating the operation button through one predetermined rotation angle for each position selection, but the switch of the invention includes only one contact circuit.
The switch of the invention is formed such that when a first operation of rotating the operation button from a first operation position to a second operation position is carried out, the contact circuit turns on once, as shown in the B column. When a second operation of rotating the operation button from the first operation position to a third operation position is carried out, the contact circuit turns on twice. Furthermore, when a third operation of rotating one revolution from the first operation position to the first operation position is carried out, the contact circuit turns on three times, and it is thereby possible to obtain three different output signals in the same way as in the heretofore known selector switch which selects three positions.
In the above, an example wherein the operation button is rotationally operated at pitches of 120° has been shown, but in the invention, the rotation pitch angle of the operation button, not being limited to this, can be optionally set.
Number | Date | Country | Kind |
---|---|---|---|
2013-130782 | Jun 2013 | JP | national |
The present application is a Continuation application of PCT International Application No. PCT/JP2014/061022 filed Apr. 18, 2014, and claiming priority from Japanese Application No. 2013-130782 filed Jun. 21, 2013, the disclosure of which is incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
6396006 | Yokoji | May 2002 | B1 |
7476822 | Miura et al. | Jan 2009 | B2 |
8294049 | Tsuduki | Oct 2012 | B2 |
20110035902 | Ikeda | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
101312104 | Nov 2008 | CN |
0 989 385 | Mar 2000 | EP |
2287871 | Feb 2011 | EP |
2335933 | Jul 1977 | FR |
2868592 | Oct 2005 | FR |
S34-832 | Feb 1959 | JP |
H02-126316 | Oct 1990 | JP |
H07-220576 | Aug 1995 | JP |
2000-097704 | Apr 2000 | JP |
2003-151401 | May 2003 | JP |
3936433 | Jun 2007 | JP |
2008-047018 | Feb 2008 | JP |
2012-243671 | Dec 2012 | JP |
Entry |
---|
China Patent Office, “Office Action for Chinese Patent Application No. 201480025858.1,” Nov. 22, 2016. |
Japan Patent Office, “Office Action for Japanese Patent Application No. 2015-522626,” dated Nov. 15, 2016. |
Europe Patent Office, “Search Report for European Patent Application No. 14814069.2,” dated Dec. 20, 2016. |
PCT, “International Search Report for International Application No. PCT/JP2014/061022”. |
Number | Date | Country | |
---|---|---|---|
20160079014 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2014/061022 | Apr 2014 | US |
Child | 14936115 | US |