The invention generally pertains to power systems, and more particularly to a self-contained rotational power system that utilizes air to produce a constant supply of rotational power.
For thousands of years mankind has attempted to harness and/or produce power, which is typically defined as the ability to supply mechanical or electrical energy. Electrical power is the rate at which electrical energy is converted to another form such as moron, heat or an electromagnetic field. Mechanical energy is typically produced by devices that are powered by human or animal effort, or that utilize the unique combination of interacting components.
One type of power that has become a necessity for modern life is rotational power. The most common application of rotational power is for motion. Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. The mechanical work required for/applied during rotation is the torque times the rotation angle. The instantaneous power of an angularly accelerating body is the torque times the angular velocity.
There are various ways of producing rotational power, the most common being electrical energy or energy provided by an engine such as an internal combustion engine. While these methods are effective, they do have drawbacks. It is not always easy to provide the required electrical energy, and many engines must use a combustant such as gasoline or diesel fuel. Another issue is the reliability of these rotational power systems. It is common for a rotational power system to utilize many components, all of which most function correctly and constantly.
What is needed is a rotational power system that does not rely on the typical energy sources. Optimally, the energy source would be readily available and not require a large number of components to implement its use. One source that fulfills these needs is air. It has been shown that air, and especially heated air can produce a significant amount of energy. By using this air in combination with a device that can utilize the air, the possibility exists of providing an inexpensive, easily available source of rotational power.
A search of the prior art did not disclose any literature or patents that read directly on the claims of the instant inventions. However, the following U.S. patents are considered related:
The 4,220,003 patent discloses an apparatus that comprises a pair of tans, a pair of pistons, coupling means interconnecting the pair of pistons in balance, a closed chamber and a reservoir within each of the tanks and partitioned by the piston. A nozzle is disposed at one end of the closed chamber and a vale is provided on each of the pistons, rotatable means and liquid feed channels. The apparatus generates rotational power with greatly reduced energy losses.
The 9,975,034 patent discloses a device and method for a rotation powered vehicle that is capable of converting a rotational motion of a platform pivotally secured to the rotation powered vehicle in either of two angular directions into a linear motion of the rotation powered vehicle in a single linear direction for the purposes of conveyance.
The 2007/0098542 publication disclose a rotational power transfer device that includes a rotatable shaft, a plurality of arm structures attached to the shaft and extending radially outward from the shaft, a plurality of panel members attached to the arm structures and hanging downward therefrom, and an energy converting member.
For background purposes and indicative of the art to which the invention relates, reference may be made to the following remaining patents found in the patent search.
A rotational power system that includes an air intake assembly with multiple air intake members, with each intake member having an outer side edge with a plurality of threaded openings. An air intake valve has a threaded body and an opening from where extends a plunger. The threaded body on the valve is dimensioned to be screwed into one of the threaded openings on the intake member. Located on the valve body is an air bore that is positioned such that when the valve is completely screwed in to the opening, the air bore is aligned with another iar bore on the side surface of the intake member. This creates a path for air to enter the valve when the plunger is extended and then forces the air through the two aligned bores when the plunger is retracted into the valves.
Located within a cavity inside the air intake member and extending outward from the side surface of the intake member is an air interface member with a cavity and a cover over the outer extended surface. The cover has an air outlet opening and is attached onto the interface member by securing means such as bolts or screws. The dimensions of the air interface member and the air intake member allow the intake member to rotate above the interface member while the interface member remains stationary.
Extending through air intake member is a center opening that is correspondingly positioned with a center opening on the air interface member. Located proximate to the intake member and interface member is an air intake extension means that has a center opening and a side member with perimeter teeth. A connecting rod extends from the intake ember and interface member to the extension member, providing a combined rotating capability. Connected to the air intake assembly is an air tank which itself is connected to an air heater. All of the connections are facilitated by hoses and/or tubes.
Located at an optimal distance depending on the application from the air intake assembly is a turbine that preferably has an inner frame. If required the turbine can be a solid circular structure without an inner frame. Optionally, extending outward from and equidistantly positioned on an outer perimeter surface of the turbine are multiple concave members (not shown). Located at the center of the turbine is an opening through which an axle is inserted. Adjacent a distal end of the axle is an outer wheel with a center opening into which the axle extends. The outer wheel is positionally aligned with the extension member on the air intake assembly. Rotational force is produced from air initially entering the air intake assembly via the air intake valve. From the assembly the air is directed to the air tank and air heater, which provides the heated air that is directed onto the turbine. The heated air from the turbine is directed back to the outer wheel, causing the wheel to rotate.
In view of the above disclosure, the primary object of the invention is to produce a self-contained rotational power system that utilizes environmental air to produce a continuous rotational force.
In addition to the primary object it is also an object of the invention to produce a rotational power system that:
These and other objects and advantages of the present invention will become apparent from the subsequent detailed description of the preferred embodiment and the appended claims taken in conjunction with the accompanying drawings.
The best mode for carrying out the invention is presented in terms that disclose a preferred embodiment of a rotational power system 10 (RPS 10). There are basically the types of power in common uses today. Mechanical and electrical (other types such as nuclear or solar are not as commonly used). The mechanical or electrical power is used to generate energy, or a force. One of the most ubiquitous examples is rotational energy which is typically utilized to produce locomotion for vehicles such as cars, trucks, trains and others. While the rotational energy that is produced is effective, a major drawback is that the rotational energy must use a power source such as an internal combustion engine or electrical power.
The RPS 10, provides an alternative to the conventional rotational power by utilizing common air to produce rotational power which can be used for any of the applications typically requiring this type of power. The RPS 10, as shown in
The air intake assembly 12, as shown in
As shown in
Located on the valve body 54 is a side air bore 64 that allows air to exit from the valve 52. The air intake extension member 66 is circular and includes a first side surface 68 and a second side surface 70. Extending from the first side surface 68 can be an extension first side member 74, which is also circular and includes a first side surface 76 and a second side surface 78. Attached to the extension first side member first side surface is a circular first side plate 80 with teeth 84 extending around the perimeter. There are center openings 86 on the intake extension member and first side member 74. When the air intake assembly is on a tire and wheel 170, a tire axle 174, as shown in
The air tank 90, as shown in
The air heater 106, as shown in
A first heater connecting tube 116 has a first end 118 connected to the air outlet opening 98 on the air tank 90 and a second end 120 connected to the heater 106 and a second heater connecting tube 124 with a first end connected to the heater 106 and a second end 128 directed towards the turbine 130.
As shown in
Attached to each tire/wheel is the air intake assembly 12 and a plurality of air intake members 30, with the air intake valves extending outward from an outer perimeter surface of the tire/wheel. Also attached to and rotating about the axle 174 is a second wheel 160 with a center opening 162 through which the axle 174 is inserted. The first wheel 156 and second wheel 160 are connected by a pulley cable 164, as shown in
The RPS 10 can operate in two operational designs: in the first design, multiple air intake members 14 are placed below a surface such as a road 180. Each air intake member is positioned such that the air intake valve's plunger extends upward through the surface. A tire and wheel 170 rolls on/over the road surface, as shown in
In the second operational design, multiple air intake members 14 interface with a tire and wheel 170. As shown in
For both designs, the RPS 10 can be attached to a frame 176, as shown in
While the invention has been described in detail and pictorially shown in the accompanying drawings it is not to be limited to such details, since many changes and modification may be made to the invention without departing from the spirit and the scope thereof. Hence, it is described to cover any and all modifications and forms which may come within the language and scope of the claims.