1. Technical Field
This application relates to a rotational thrombectomy wire for clearing thrombus from native vessels.
2. Background of Related Art
There have been various attempts to break up clots and other obstructing material in the graft. One approach is through injection of thrombolytic agents such as urokinase or streptokinase. These agents, however, are expensive, require lengthier hospital procedures and create risks of drug toxicity and bleeding complications as the clots are broken.
Other approaches to breaking up clots involve mechanical thrombectomy devices. For example, U.S. Pat. No. 5,766,191 discloses a cage or basket composed of six memory wires that expand to press against the inner lumen to conform to the size and shape of the lumen. This multiple wire device is expensive and can be traumatic to the graft, possibly causing damage, since as the basket rotates, the graft is contacted multiple times by the spinning wires. Other risks associated with the basket include the possibility of catching onto the graft itself and tearing the graft as well as catching and tearing the suture at the anastomotic site. Additionally, the basket can become filled with a clot which would then require time consuming withdrawal of the basket, cleaning the basket and reinserting it into the lumen. This device could be traumatic if used in the vessel, could denude endothelium, create vessel spasms and has the potential for basket and drive shaft fracture.
U.S. Pat. No. 6,090,118, incorporated herein by reference in its entirety, discloses a wire rotated to create a standing wave to break-up or macerate thrombus. The single wire is less traumatic than the aforedescribed basket device since it minimizes contact with the graft wall while still effectively mechanically removing thrombotic material.
U.S. Pat. No. 7,645,261, the entire contents of which are incorporated herein by reference, discloses a thrombectomy device having a double balloon structure. This device advantageously reduces the number of individual catheters required to perform the thrombectomy procedure and reduces the number of surgical steps, thus simplifying the procedure and reducing operating costs.
U.S. Pat. No. 7,037,316, the entire contents of which is incorporated herein by reference discloses another example of a rotational thrombectomy wire for breaking up clots in grafts. The thrombectomy wire has a sinuous shape at its distal end and is contained within a sheath in a substantially straight non-deployed position. When the sheath is retracted, the distal portion of the wire is exposed to enable the wire to return to its non-linear sinuous configuration. The wire is composed of two stainless steel wires wound side by side with an elastomeric tip at the distalmost end. Actuation of the motor causes rotational movement of the wire, creating a wave pattern, to macerate thrombus. Thus, it provides the additional advantages of increased reliability and consistency in creating the wave pattern since the wave pattern created by the standing wave of the '118 patent will depend more on the rotational speed and the stiffness of the wire. Additionally, the sinuous configuration enables creation of a wave pattern at a lower rotational speed.
Although the sinuous wire of the '316 patent is effective in proper clinical use to macerate thrombus in dialysis grafts, it is not best suited for use in native vessels. US patent publication no. 2006/0106407, the entire contents of which are incorporated herein by reference, discloses a thrombectomy wire better suited for use in native vessels, and can also be used for deep vein thrombosis and pulmonary embolisms.
In certain thrombectomy procedures, such as in neurovascular or pulmonary procedures, during wire rotation, broken plaque particles which are dislodged can travel through the vascular system. If these particles are too large, then they can create risks for the patient as they travel downstream through the vessels, causing clots which can result in stroke or in certain instances death of the patient. It would be advantageous to reduce these risks in these procedures.
The present invention advantageously provides a rotational thrombectomy apparatus for breaking up thrombus or other obstructive material in a lumen of a vascular graft or vessel. The apparatus comprises a wire relatively movable with respect to a flexible sheath and has a first configuration and a second deployed configuration, the wire having a straighter configuration in the first configuration. The wire is operatively connected to a motor for rotation of the wire to contact and break up the thrombus or other obstructive material. A blocking device at a distal portion of the apparatus is movable between a collapsed configuration and an expanded configuration, the blocking device in the expanded configuration configured to block thrombus dislodged by rotation of the wire.
In some embodiments, the wire is sinuous in configuration and assumes its sinuous configuration when in the deployed configuration. The wire can be composed of an inner core and an outer coil. In some embodiments, the wire terminates in a C or J-tip wherein rotation creates at least one vibrational node.
Preferably, the wire spins independent of the blocking device such that the blocking device remains substantially stationary (non-rotational) during rotation of the wire.
The blocking device preferably includes a shaft or tubular portion connected to a distal end of the wire wherein the wire is rotatable independent of the shaft or tubular portion.
The apparatus can include one or two inflatable balloons, the balloon(s) spaced proximally of a distal tip of the wire. One balloon can be an angioplasty balloon and one balloon can be configured for engaging and pulling an arterial plug. In some embodiments, the first balloon is positioned proximal of the second balloon.
The apparatus can includes a housing, wherein the wire extends from the housing and the housing preferably further includes a battery and a motor for causing rotation of the wire.
In some embodiments, the blocking device includes a plurality of wires and a porous material covering at least a portion of the wires. The material in some embodiments covers only a distal portion of the wires. In some embodiments, the material covers the entire portion of the wires. The material can be attached to an outer surface and/or inner surface of the wires. In some embodiments, the wires are expandable to expand a material overlying the wires.
In another aspect, the present invention provides a thrombectomy apparatus for breaking up thrombotic material comprising a rotatable wire having a non-linear configuration, a blocking device positioned at a distal portion of the wire distal of the non-linear configuration to expand radially with respect to the wire, and a motor for rotating the wire to break up thrombotic material as the wire rotates about its axis.
The apparatus can include a flexible tube with the wire rotatable with respect to the flexible tube. Preferably, the wire is rotatable independent of the blocking device.
In another aspect, the present invention provides a method for breaking up the thrombotic material from a lumen of a vascular graft or vessel comprising;
inserting a sheath;
exposing a rotatable wire of a thrombectomy apparatus from the sheath;
rotating the wire to break up thrombotic material; and
blocking at least some of the thrombotic material with a blocking device connected to a distal portion of the apparatus.
In some embodiments, the step of exposing a rotatable wire from the sheath changes the shape of the wire. In some embodiments, the step of rotating the wire includes the step of rotating the wire while the blocking device does not rotate.
Preferably, the blocking device is movable between a collapsed and expanded position.
Preferred embodiment(s) of the present disclosure are described herein with reference to the drawings wherein:
Referring now in detail to the drawings where like reference numerals identify similar or like components throughout the several views,
The thrombectomy apparatus of
It is also contemplated that the wire can be a separate component/assembly insertable into a separate sheath component/assembly either prior to insertion into the body or after the sheath is already placed in the body. In the latter, the sheath can be inserted to the target site over a placement guidewire and then the guidewire removed for insertion of the thrombectomy wire into the already placed sheath. The wire would include a housing containing a motor or attachable to a housing containing a motor either prior to or after insertion through the sheath.
Contained within housing 12 is a motor powered by a battery contained within a compartment in the housing accessible by removing battery door 33. An actuation button is electrically connected to one contact terminal of the battery and the motor is electrically connected to another contact terminal of the battery. The actuation button can be connected to the motor via a wire strip such that depression of the button, which is accessible from a portion of housing 12, turns on the motor to activate the apparatus.
Wire 10 (or wire 100 discussed below) is operatively connected to the motor. Operative connection encompasses direct connection or connection via interposing components to enable rotation when the motor is actuated.
In one embodiment, the wire 60 is operatively connected to the motor via a support tube which is preferably composed of metal. A speed reducing gear can be provided to decrease the rotational speed. When the motor is energized, the support tube is rotated about its longitudinal axis, via rotation of a chuck driven by gears, thereby rotating the wire 60 about its longitudinal axis. This rotation of wire 60 creates at least one vortex that macerates and liquefies the thrombus into small particles within the vascular lumen. Further details of the internal components which can be utilized to connect and rotate the wire are illustrated and described in U.S. Pat. No. 7,507,246, the entire contents of which are incorporated herein by reference. Such arrangement can also be used to connect and spin the thrombectomy wire of the embodiment of
As noted above, flexible tube (sheath) 40 is slidable with respect to the housing 12 and wire 60. Flexible tube 40 is also rotatable. Knob 42 can have a gripping region 46. Sliding movement of knob 42 accordingly slides sheath 40 axially and rotation of knob 42 accordingly rotates sheath 40 about its longitudinal axis. Proximal sliding movement of knob 42 exposes rotational wire 60, enabling it to assume its curved configuration; rotation of knob 42 orients the rotational wire 60 due to the J-shaped distal end. The gripping region 46 and/or extension 48 of knob 42 can contain external threads (not shown) for threaded engagement with the distal end of housing 12 to lock the sheath 40 in the advanced and retracted positions to maintain exposure or covering of the wire 60.
As an alternative, a locking slot 80 can be provided as in
The flexible sheath 40 can optionally contain one or more braided wires embedded in the wall to increase the stiffness. Such braided wires could preferably extend the length of the sheath 40.
It is also contemplated as noted above that the thrombectomy wires disclosed herein can be provided without a sheath and inserted into or an already placed sheath in the body or inserted into a sheath and then together placed in the body.
Extension arm 52 of the Touhy borst positioned within housing 12 has a lumen communicating with the lumen of flexible sheath 40. Fluids such as imaging dye can be injected through arm 52, flowing through sheath 40 in the space between wire 60 and the inner wall of the sheath 40, and exiting a distal opening to flow into the graft or vessel. This imaging dye can be used to provide an indication that fluid flow has resumed in the graft or vessel. The Touhy can contain a conventional silicone gasket which is compressed when tightened to provide a seal to prevent back flow of fluid around the support tube. A radiopaque marker can be provided in the apparatus for imaging to visually locate the position of the apparatus. Such extension arm connection and structure can also be utilized with the
An alternate wire connection is illustrated in
Referring back to
A clot blocking device in the form of a basket 70 is connected to the wire 60. The device can also be configured to capture the clots. The basket 70 has a proximal portion 72 and a distal portion 74. Proximal portion converges into tubular portion 71 and distal portion 74 converges into tubular portion 73. Distal tubular portion 73 includes a soft atraumatic tip 76 attached thereto which can be composed of rubber, Pebax or other elastomeric materials to provide an atraumatic distal end to prevent damage to the vessel wall during manipulation. The proximal portion 72 has a curved tube 78 (either integral or attached) which is configured for connection to a distal portion of wire 60. Various methods of attachment can be utilized. The attachment methods enable the wire 60 to spin while the blocking device does not spin and remains substantially stationary. One example of an attachment structure is shown, in
The blocking device 70 is movable between an initial collapsed position within the sheath 40 for delivery and an expanded deployed configuration when exposed from the sheath. Such collapsed and expanded positions are shown in
Turning to the alternate embodiment of the wire of
Wire 160 has a substantially linear portion extending through most of its length, from a proximal region, through an intermediate region to distal region 166. At the distal region 166, wire 160 has a sinuous shape in that as shown it has a first arcuate region 163 facing a first direction (upwardly as viewed in the orientation of
When the sheath (tube) 140 is in the advanced position as in
In one embodiment, the wire 160 is composed of an inner core and outer layer or coil. The inner core can be formed by twisting a series of wires together in a tight configuration. The outer coil can be formed by winding a wire, preferably of larger diameter, to form an opening therethrough. This tightly wound outer/inner core structure enables rotation of the distal end of the wire 160 corresponding to rotation at its proximal end as torque is transmitted to the distal end.
Various dimensions of the wire and flexible tube are contemplated. By way of example only, in one embodiment, where the flexible tube 140 has an outer diameter of about 0.062 inches, the curved regions of the wire 160 would extend from the longitudinal axis a distance of about 0.188 inches and the radius of curvature at region 165 would be about 0.376 inches in a wire having an overall diameter (combined outer coil and inner core) of about 0.035 inches. As can be appreciated, these dimensions are provided by way of example as other dimensions are also contemplated.
In an alternate embodiment of the sinuous thrombectomy wire, the wire includes a core, a bifilar wire (coil), and shrink wrap. The core can be formed by multiple twisted wires. The bifilar wire can be formed by two wires wound together, and wound side by side so the cross-sectional area or diameter of the wire fills the space between adjacent turns of the other wire. The distal region of the bifilar wire is formed into a sinuous or s-shape to contact the vessel wall as the wire rotates. Although in the preferred embodiment the outer wire is a multifilar wire in the form of a bifilar wire (two wires), a different number of wires could be wound to form the outer wire component of the thrombectomy wire, including a single wound wire.
In this embodiment, the core is positioned within the bifilar wire and preferably has an outer diameter substantially equal to the inner diameter of the coil. The core has a sinuous shaped portion within the sinuous shaped portion of the outer wire, corresponding to the sinuous shape. In one embodiment, the core extends the entire length of the bifilar wire. The core can alternatively have a length of about 4-5 inches so it extends through the distal linear portion and sinuous portion of the wire.
The core in this embodiment can be composed of a flexible material which will limit the compressibility of the wire during use. The core can be composed of Nylon, and preferably a drawn Nylon monofilament. Other possible materials include, for example, Teflon, polypropylene, PET, and fluorocarbon as well as shape memory material such as Nitinol. The Nylon provides a non-compressible material to limit the compressibility of the wire during use. This enables the coil (bifilar wire) to compress only to that diameter. By limiting compressibility it strengthens the wire as it reduces its degree of elongation if it is under torque. It also prevents bending or knotting of the wire which could otherwise occur in native vessels. It increases the torsional strength of the wire and also strengthens the wire to accommodate spasms occurring in the vessel. The core can be attached by adhesive at the tip, welded, crimped, soldered or can alternatively be free floating.
A shrink wrap material can cover a distal portion of the bifilar wire to block the interstices of the coil and provide a less abrasive surface. The shrink wrap can be made of PET, Teflon, Pebax, polyurethane or other polymeric materials. The material can extend over the exposed portion of the wire (preferably for about 3 inches to about 4 inches) and helps to prevent the native vessel from being caught in the coil and reduces vessel spasms. Alternatively, instead of shrink wrap, a coating can be applied to the coil formed by the bifilar wire to cover the interstices. (Examples of coatings which can be utilized include hydrophilic coatings and PTFE.)
In the embodiment of a core of shape memory material, the memorized configuration is sinuous or s-shape substantially corresponding to the s-shape of the bifilar wire. In the softer state within the sheath, the core is in a substantially linear configuration. This state is used for delivering the wire to the surgical site. When the wire is exposed to warmer body temperature, or when released from the constraints of the sheath, the core transforms to its austenitic state, assuming the s-shaped memorized configuration.
The Nitinol core, like the Nylon core, is not compressible so it will also limit the compressibility of the bifilar wire. The Nitinol core also will increase the stiffness of the wire thereby reducing the chance of knotting and kinking and increase the strength of the wire to accommodate any spasms in the vessel. Its shape memory helps hold the amplitude of the bifilar wire during use to maintain its force against the clot for maceration upon rotation. It preferably extends about 4-5 inches so it extends through the distal linear portion and sinuous portion of the wire. It can alternatively extend a shorter or longer length within the wire, or even the entire length.
In another embodiment, a stainless steel braid, cable, or strand of wires twisted together provides the inner core member to limit compressibility of the coil (bifilar wire) and provide increased stiffness, strength and other advantages of the core enumerated above.
Further details of the wire are disclosed in pending Patent Publication No. 2006/0106407 published May 18, 2006, the entire contents of which are incorporated herein by reference.
Turning now to the clot blocking device, the blocking device will now be described in conjunction with
The blocking device 170 is positioned distally of the thrombectomy wire 160 and is therefore exposed before the wire during use. The device 170 includes a plurality of wires 172. The wires 172 are movable from a compressed configuration, positioned inside the sheath 140 (
The blocking device 170 (as well as the alternate blocking devices 200, 300 described below) can be utilized with any of the rotational thrombectomy wires described herein as well as with other thrombectomy devices to block particles dislodged during the thrombectomy procedure.
In the alternate embodiment of
When the blocking device 200 is exposed from the sheath 240, the wires 212, 214 automatically move to their expanded position to form loops. The wires can be made of springy material or shape memory material. Ends 212a, 214a extend distally from proximal tubular portion 240 and ends 212b, 214b extend proximally from distal tubular portion 241. That is, a first looped wire region is formed by each wire 212, 214 on one side of a longitudinal axis of the apparatus and a second looped wire region is formed by each wire 212, 214 on the other side of the longitudinal axis of the apparatus, preferably about 180 degrees apart. This double looped configuration causes the membrane 280 to be stretched on opposing sides of the device and preferably block about a 360 degree area. Thus, the stretching of membrane 280 on both sides of the device to the illustrated expanded configuration of
The expanded loops of the wires 212, 214 thus lie in a plane at an angle to both the longitudinal axis and transverse axis of the apparatus (catheter). In other words, the plane of the loop opening would be at an angle (preferably at a slight angle) to the longitudinal and transverse axis of the sheath 240. The wires 212, 214 would thus extend such that the loop opening is slightly offset from the direction of the longitudinal axis of sheath 240 but still open generally in the direction of blood flow. That is, a central longitudinal axis extending through the loop opening would be at an angle with respect to the longitudinal axis of the sheath 240. Alternate wire loops and membranes are disclosed in commonly assigned U.S. Pat. Nos. 7,604,649 and 7,331,976, the entire contents each of which are incorporated herein by reference. For example, the wire can be configured so the two looped sections are axially offset as shown in FIG. 28 of U.S. Pat. No. 7,604,649.
Consequently, in some embodiments, the plane of the loop opening is perpendicular to the longitudinal axis of the catheter (parallel to the transverse axis) and perpendicular to the direction of blood flow. In other embodiments, rather than perpendicular, the plane of the loop opening is at an angle less than 90 degrees, but preferably greater than about 45 degrees to the longitudinal axis.
The expansion movement of the wires causes the overlying membrane to be deployed, moving to an expanded position. The membranes 180 (and 80, 280 and 380 discussed herein) can be a polymeric membrane, such as polyurethane or PET, which is expanded by the wires. A mouth or opening e.g. opening 171 of
Alternatively, the blocking device can be a tightly wound metal braided material such as shape memory metal, e.g. Nitinol.
To withdraw the blocking device, the sheath and/or wires are moved to retract the loop and membrane to the initial low profile insertion position within the sheath 240.
Another alternate embodiment of the blocking device is designated by reference numeral 300 in
In use of the thrombectomy apparatus (catheters) of the present invention, which by way of example is shown and described with respect to the embodiment of
The flexible sheath 540 of apparatus 500 has a lumen 516, preferably circular in cross-section, for receiving the rotational wire 560, and first and second lumens 513, 514, each communicating with a balloon, for inflating the respectively balloon. More specifically, first lumen 513 communicates with angioplasty balloon 520, which is preferably somewhat elliptical shape, and second lumen 514 communicates with balloon 524, which is preferably substantially spherical in shape. Inlet ports communicate with lumens 513, 514, respectively, to inflate the respective balloons 520, 524.
In this embodiment which provides a double balloon thrombectomy apparatus, the apparatus reduces the procedural steps for thrombus removal. In the prior art, two independent balloon catheters plus a mechanical thrombectomy device are required to perform a thrombectomy procedure; with the apparatus 500, only one device is required. Thus, the numerous catheter insertions and removals can be avoided.
A clot blocking device such as any of those used with the previous embodiments is positioned at the distal end of the apparatus. For illustrative purposes, the blocking device 570 shown is identical to device 170 and the corresponding parts are labeled with designations “500”. Therefore, blocking device 570 has wires 572 and membrane 580. Atraumatic tip 576 is attached to the distal end.
In the embodiment of
In use of the double balloon thrombectomy device of
After breaking up the blood clot, if used in a dialysis graft clearing procedure, the apparatus is removed from venous access sheath and inserted through an arterial access sheath. The apparatus 500 is inserted so the tip extends slightly beyond the arterial anastomotic site, past the arterial plug (clot), and the spherical distal balloon 524 is inflated. The apparatus is then pulled proximally so that balloon 524 pulls the arterial plug into the graft G. The thrombectomy apparatus 500 can then be actuated to rotate wire 560 to break up the clot and other obstructive material, and optionally the broken particles can be removed by suction as described above. Particles captured by blocking device 570 can also be removed by suction. The thrombectomy apparatus 500 is then removed through the arterial access sheath, completing the thrombectomy procedure.
It is also contemplated that as an alternative to the double balloon thrombectomy devices described above, a single balloon thrombectomy device can be provided. This device could contain either angioplasty balloon 520 or balloon 524. If only balloon 520 is provided, although the procedure would still require a separate balloon catheter to remove the arterial plug, it would still advantageously eliminate the step and expense of a separate angioplasty catheter. Alternatively, if the single balloon device contained only balloon 524, although the procedure would require a separate angioplasty balloon catheter, it would still advantageously eliminate the step and expense of a separate balloon catheter for pulling the arterial plug into the graft.
It should also be appreciated that the double balloon concept to facilitate and expedite the surgical thrombectomy procedure can be utilized with other thrombectomy devices. For example, mechanical thrombectomy devices utilizing rotating wire baskets, fluid jet (hydrodynamic) devices applying high pressure fluid, devices utilizing brushes having bristles to scrape the clot and devices with rotating impellers can be modified to incorporate one or more balloons, i.e. an angioplasty and/or distal balloon to perform an angioplasty procedure and/or pull an arterial plug into the graft.
The blocking devices disclosed herein can be utilized with any of the wire embodiments disclosed herein as well as with other thrombectomy devices to block clots from traveling downstream.
In the embodiment of
The various thrombectomy apparatus described herein can be utilized in a variety of applications, including but not limited to grafts, AV fistulas, deep vein thrombosis (e.g. in iliac or femoral vein), pulmonary embolism (e.g. in pulmonary artery) and neuro applications (e.g. in carotid or cerebral arteries).
While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the disclosure as defined by the claims appended hereto.
This application is a continuation of patent application Ser. No. 12/861,110, filed Aug. 23, 2010, which is a continuation-in-part of patent application Ser. No. 12/631,787, filed Dec. 4, 2009, now U.S. Pat. No. 7,909,801, which is a continuation of patent application Ser. No. 11/267,379, filed Nov. 4, 2005, now U.S. Pat. No. 7,645,261, which is a continuation of patent application Ser. No. 09/888,149, filed Jun. 22, 2001, now abandoned, which is a continuation-in-part of Patent Cooperation Treaty Application No. PCT/US00/41355, filed Oct. 20, 2000, which designates the United States, priority from the filing date of which is hereby claimed under 35 U.S.C. §120, which PCT application claims the benefit of U.S. Provisional Patent Applications No. 60/214,331 filed Jun. 27, 2000, and No. 60/161,124 filed Oct. 22, 1999, the benefit of which is hereby claimed under 35 U.S.C. §119. The entire contents of each of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2556783 | Wallace | Jun 1951 | A |
2756752 | Scherlis | Jul 1956 | A |
3108594 | Glassman | Oct 1963 | A |
3612058 | Ackerman | Oct 1971 | A |
3741214 | Tillander | Jun 1973 | A |
3749085 | Willson et al. | Jul 1973 | A |
3841308 | Tate | Oct 1974 | A |
4030503 | Clark, III | Jun 1977 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4425908 | Simon | Jan 1984 | A |
4559046 | Groshong et al. | Dec 1985 | A |
4579127 | Haacke | Apr 1986 | A |
4614188 | Bazell et al. | Sep 1986 | A |
4646736 | Auth | Mar 1987 | A |
4664112 | Kensey et al. | May 1987 | A |
4676778 | Nelson, Jr. | Jun 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4732154 | Shiber | Mar 1988 | A |
4745919 | Bundy et al. | May 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4819634 | Shiber | Apr 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4883460 | Zanetti | Nov 1989 | A |
4906244 | Pinchuk et al. | Mar 1990 | A |
4935025 | Bundy et al. | Jun 1990 | A |
4984581 | Stice | Jan 1991 | A |
4986807 | Farr | Jan 1991 | A |
4990134 | Auth | Feb 1991 | A |
4994067 | Summers | Feb 1991 | A |
5002553 | Shiber | Mar 1991 | A |
RE33569 | Gifford et al. | Apr 1991 | E |
5007896 | Shiber | Apr 1991 | A |
5009659 | Hamlin et al. | Apr 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5011489 | Salem | Apr 1991 | A |
5011490 | Fischell et al. | Apr 1991 | A |
5019088 | Farr | May 1991 | A |
5019089 | Farr | May 1991 | A |
5024651 | Shiber | Jun 1991 | A |
5026383 | Nobles | Jun 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5041217 | Reid | Aug 1991 | A |
5042984 | Kensey et al. | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049124 | Bales | Sep 1991 | A |
5049154 | Quadri | Sep 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5054501 | Chuttani et al. | Oct 1991 | A |
5059203 | Husted | Oct 1991 | A |
5061240 | Cherian | Oct 1991 | A |
5062648 | Gomringer | Nov 1991 | A |
5069662 | Bodden | Dec 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5071424 | Reger | Dec 1991 | A |
5071425 | Gifford et al. | Dec 1991 | A |
5074841 | Ademovic et al. | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5084010 | Plaia et al. | Jan 1992 | A |
5085662 | Willard | Feb 1992 | A |
5087264 | Miller et al. | Feb 1992 | A |
5087265 | Summers | Feb 1992 | A |
5092839 | Kipperman | Mar 1992 | A |
5092872 | Segalowitz | Mar 1992 | A |
5092873 | Simpson et al. | Mar 1992 | A |
5097849 | Kensey et al. | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5100426 | Nixon | Mar 1992 | A |
5102415 | Guenther | Apr 1992 | A |
5108411 | McKenzie | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5112347 | Taheri | May 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5116352 | Schnepp-Pesch et al. | May 1992 | A |
5127902 | Fischell | Jul 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5131379 | Sewell | Jul 1992 | A |
5133725 | Quadri | Jul 1992 | A |
5135482 | Neracher | Aug 1992 | A |
5135484 | Wright | Aug 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5139506 | Bush | Aug 1992 | A |
5141491 | Bowald | Aug 1992 | A |
5141503 | Sewell | Aug 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152772 | Sewell | Oct 1992 | A |
5152773 | Redha | Oct 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5156610 | Reger | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5170805 | Kensey et al. | Dec 1992 | A |
5171316 | Mehigan | Dec 1992 | A |
5176693 | Pannek | Jan 1993 | A |
5178625 | Groshong | Jan 1993 | A |
5181920 | Mueller et al. | Jan 1993 | A |
5192268 | Shiber | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5192290 | Hilal | Mar 1993 | A |
5192291 | Pannek | Mar 1993 | A |
5195954 | Schnepp-Pesch et al. | Mar 1993 | A |
5195956 | Stockmeier | Mar 1993 | A |
5196024 | Barath | Mar 1993 | A |
5197485 | Grooters | Mar 1993 | A |
5201750 | Hecherl et al. | Apr 1993 | A |
5203772 | Hammerslag et al. | Apr 1993 | A |
5209749 | Buelna | May 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5211683 | Maginot | May 1993 | A |
5217026 | Stoy et al. | Jun 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5217474 | Zacca et al. | Jun 1993 | A |
5222965 | Haughton | Jun 1993 | A |
5222966 | Perkins et al. | Jun 1993 | A |
5224945 | Pannek | Jul 1993 | A |
5224949 | Gomringer et al. | Jul 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5234450 | Segalowitz | Aug 1993 | A |
5234451 | Osypka | Aug 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5242461 | Kortenbach et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5250059 | Andreas et al. | Oct 1993 | A |
5250060 | Carbo et al. | Oct 1993 | A |
5251640 | Osborne | Oct 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5262593 | Madry et al. | Nov 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269751 | Kaliman et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5282484 | Reger | Feb 1994 | A |
5282813 | Redha | Feb 1994 | A |
5284478 | Nobles et al. | Feb 1994 | A |
5284486 | Kotula et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5300025 | Wantink | Apr 1994 | A |
5303719 | Wilk et al. | Apr 1994 | A |
5304189 | Goldberg et al. | Apr 1994 | A |
5304220 | Maginot | Apr 1994 | A |
5306244 | Shiber | Apr 1994 | A |
5308354 | Zacca et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5312427 | Shturman | May 1994 | A |
5313967 | Lieber et al. | May 1994 | A |
5314407 | Auth et al. | May 1994 | A |
5314438 | Shturman | May 1994 | A |
5318576 | Plassche et al. | Jun 1994 | A |
5320599 | Griep et al. | Jun 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5334211 | Shiber | Aug 1994 | A |
5336167 | Sullivan et al. | Aug 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5342394 | Matsuno et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5345940 | Seward et al. | Sep 1994 | A |
5345945 | Hodgson et al. | Sep 1994 | A |
5346473 | Bowman | Sep 1994 | A |
5348017 | Thornton et al. | Sep 1994 | A |
5350390 | Sher | Sep 1994 | A |
5352232 | Cohen | Oct 1994 | A |
5356418 | Shturman | Oct 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5358485 | Vance et al. | Oct 1994 | A |
5358507 | Daily | Oct 1994 | A |
5358509 | Fine et al. | Oct 1994 | A |
5360432 | Shturman | Nov 1994 | A |
5360433 | Medl | Nov 1994 | A |
5366463 | Ryan | Nov 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5368603 | Halliburton | Nov 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5370651 | Summers | Dec 1994 | A |
5370653 | Cragg | Dec 1994 | A |
5372144 | Mortier et al. | Dec 1994 | A |
5372601 | Lary | Dec 1994 | A |
5376100 | Lefebvre et al. | Dec 1994 | A |
5383460 | Jang et al. | Jan 1995 | A |
5395311 | Andrews | Mar 1995 | A |
5395315 | Griep | Mar 1995 | A |
5395384 | Duthoit | Mar 1995 | A |
5402790 | Jang et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5409454 | Fischell et al. | Apr 1995 | A |
5411509 | Hilal | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423799 | Shiu | Jun 1995 | A |
5423838 | Willard | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5441510 | Simpson | Aug 1995 | A |
5449369 | Imran | Sep 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5451208 | Goldrath | Sep 1995 | A |
5453088 | Boudewijn et al. | Sep 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484412 | Pierpont | Jan 1996 | A |
5488958 | Topel et al. | Feb 1996 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496267 | Drasler et al. | Mar 1996 | A |
5497782 | Fugoso | Mar 1996 | A |
5501694 | Ressemann et al. | Mar 1996 | A |
5507292 | Jang et al. | Apr 1996 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507761 | Duer | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5514092 | Forman et al. | May 1996 | A |
5514115 | Frantzen et al. | May 1996 | A |
5514150 | Rostoker | May 1996 | A |
5514151 | Fogarty et al. | May 1996 | A |
5520635 | Gelbfish | May 1996 | A |
5522824 | Ashby | Jun 1996 | A |
5522825 | Kropf et al. | Jun 1996 | A |
5522826 | Daily | Jun 1996 | A |
5527325 | Conley et al. | Jun 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5527327 | Louw et al. | Jun 1996 | A |
5527330 | Tovey | Jun 1996 | A |
5536242 | Willard et al. | Jul 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5540707 | Ressemann et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5542925 | Orth | Aug 1996 | A |
5547469 | Rowland et al. | Aug 1996 | A |
5551443 | Sepetka et al. | Sep 1996 | A |
5554163 | Shturman | Sep 1996 | A |
5556405 | Lary | Sep 1996 | A |
5556408 | Farhat | Sep 1996 | A |
5562275 | Weissenfluh et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5569179 | Adrian et al. | Oct 1996 | A |
5569204 | Cramer | Oct 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5569276 | Jang et al. | Oct 1996 | A |
5569277 | Evans et al. | Oct 1996 | A |
5569279 | Rainin | Oct 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5571130 | Simpson et al. | Nov 1996 | A |
5571167 | Maginot | Nov 1996 | A |
5584842 | Fogarty et al. | Dec 1996 | A |
5584843 | Wulfman et al. | Dec 1996 | A |
5591183 | Chin | Jan 1997 | A |
5591184 | McDonnell et al. | Jan 1997 | A |
5599307 | Bacher et al. | Feb 1997 | A |
5601580 | Goldberg et al. | Feb 1997 | A |
5601581 | Fogarty et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5609602 | Machemer et al. | Mar 1997 | A |
5616149 | Barath | Apr 1997 | A |
5622188 | Plaia et al. | Apr 1997 | A |
5624455 | Matsuno | Apr 1997 | A |
5624457 | Farley et al. | Apr 1997 | A |
5626562 | Castro | May 1997 | A |
5626593 | Imran | May 1997 | A |
5626597 | Urban et al. | May 1997 | A |
5626602 | Gianotti et al. | May 1997 | A |
5628746 | Clayman | May 1997 | A |
5628761 | Rizik | May 1997 | A |
5630823 | Schmitz-Rode et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5643199 | Rowland et al. | Jul 1997 | A |
5643296 | Hundertmark et al. | Jul 1997 | A |
5643297 | Nordgren et al. | Jul 1997 | A |
5643298 | Nordgren et al. | Jul 1997 | A |
5649941 | Lary | Jul 1997 | A |
5649946 | Bramlet | Jul 1997 | A |
5653722 | Kieturakis | Aug 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5658301 | Lemaitre et al. | Aug 1997 | A |
5658302 | Wicherski et al. | Aug 1997 | A |
5662603 | Gelbfish | Sep 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5662701 | Plaia et al. | Sep 1997 | A |
5665093 | Atkins | Sep 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5667480 | Knight et al. | Sep 1997 | A |
5669920 | Conley | Sep 1997 | A |
5674226 | Doherty et al. | Oct 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5681335 | Serra et al. | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5683362 | Rowland et al. | Nov 1997 | A |
5688234 | Frisbie | Nov 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5695508 | Chigogidze | Dec 1997 | A |
5695514 | Chin | Dec 1997 | A |
5697944 | Lary | Dec 1997 | A |
5700240 | Barwick et al. | Dec 1997 | A |
5702412 | Popov et al. | Dec 1997 | A |
5702413 | Lafontaine | Dec 1997 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5728123 | Lemelson et al. | Mar 1998 | A |
5733296 | Rogers et al. | Mar 1998 | A |
5746758 | Nordgren et al. | May 1998 | A |
5755968 | Stone | May 1998 | A |
5762637 | Berg et al. | Jun 1998 | A |
5766191 | Trerotola | Jun 1998 | A |
5766192 | Zacca | Jun 1998 | A |
5776153 | Rees | Jul 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5830156 | Ali | Nov 1998 | A |
5833631 | Nguyen | Nov 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5840046 | Deem | Nov 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5876413 | Fogarty et al. | Mar 1999 | A |
5876414 | Straub | Mar 1999 | A |
5882329 | Patterson et al. | Mar 1999 | A |
5885227 | Finlayson | Mar 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5902268 | Saab | May 1999 | A |
5904679 | Clayman | May 1999 | A |
5910364 | Miyata et al. | Jun 1999 | A |
5916166 | Reiss et al. | Jun 1999 | A |
5919163 | Glickman | Jul 1999 | A |
5938623 | Quiachon et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5954737 | Lee | Sep 1999 | A |
5971991 | Sunderland | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5984877 | Fleischhacker, Jr. | Nov 1999 | A |
5984947 | Smith | Nov 1999 | A |
6001068 | Uchino et al. | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6004279 | Crowley et al. | Dec 1999 | A |
6019736 | Avellanet et al. | Feb 2000 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6022363 | Walker et al. | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6030397 | Monetti et al. | Feb 2000 | A |
6036708 | Sciver | Mar 2000 | A |
6056721 | Shulze | May 2000 | A |
6056770 | Epstein et al. | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6080178 | Meglin | Jun 2000 | A |
RE36764 | Zacca et al. | Jul 2000 | E |
6083198 | Afzal | Jul 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6102884 | Squitieri | Aug 2000 | A |
6113614 | Mears | Sep 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6126635 | Simpson et al. | Oct 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6129750 | Tockman et al. | Oct 2000 | A |
6143009 | Shiber | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146397 | Harkrider, Jr. | Nov 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6165567 | Ventzek et al. | Dec 2000 | A |
6168570 | Ferrera | Jan 2001 | B1 |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6183487 | Barry et al. | Feb 2001 | B1 |
6185449 | Berg et al. | Feb 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6193735 | Stevens | Feb 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6217595 | Shturman et al. | Apr 2001 | B1 |
6221042 | Adams | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231588 | Zadno-Azizi | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6238405 | Findlay, III et al. | May 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6251086 | Cornelius et al. | Jun 2001 | B1 |
6254550 | McNamara et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264667 | McGuckin, Jr. | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270509 | Barry et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6299623 | Wulfman | Oct 2001 | B1 |
6319262 | Bates et al. | Nov 2001 | B1 |
6322572 | Lee | Nov 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6338735 | Stevens et al. | Jan 2002 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6364900 | Heuser | Apr 2002 | B1 |
6368338 | Konya et al. | Apr 2002 | B1 |
6371928 | McFann et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6402745 | Wilk | Jun 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6482215 | Shiber | Nov 2002 | B1 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6500191 | Addis | Dec 2002 | B2 |
6527979 | Constanta et al. | Mar 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6551268 | Kaganov et al. | Apr 2003 | B1 |
6558405 | McInnes | May 2003 | B1 |
6562058 | Seguin et al. | May 2003 | B2 |
6569184 | Huter | May 2003 | B2 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6592606 | Huter et al. | Jul 2003 | B2 |
6592616 | Stack et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6602264 | McGuckin, Jr. | Aug 2003 | B1 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638294 | Palmer | Oct 2003 | B1 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6652505 | Tsugita | Nov 2003 | B1 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6652557 | MacDonald | Nov 2003 | B1 |
6656202 | Papp et al. | Dec 2003 | B2 |
6656203 | Roth et al. | Dec 2003 | B2 |
6656207 | Epstein et al. | Dec 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663613 | Evans et al. | Dec 2003 | B1 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6706053 | Boylan et al. | Mar 2004 | B1 |
6706055 | Douk et al. | Mar 2004 | B2 |
6716231 | Rafiee et al. | Apr 2004 | B1 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6726702 | Khosravi | Apr 2004 | B2 |
6726703 | Broome et al. | Apr 2004 | B2 |
6740061 | Oslund et al. | May 2004 | B1 |
6743247 | Levinson et al. | Jun 2004 | B1 |
6746469 | Mouw | Jun 2004 | B2 |
6755847 | Eskuri | Jun 2004 | B2 |
6761727 | Ladd | Jul 2004 | B1 |
6761732 | Burkett et al. | Jul 2004 | B2 |
6773448 | Kusleika et al. | Aug 2004 | B2 |
6818006 | Douk et al. | Nov 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6837898 | Boyle et al. | Jan 2005 | B2 |
6840950 | Stanford et al. | Jan 2005 | B2 |
6911036 | Douk et al. | Jun 2005 | B2 |
6918921 | Brady et al. | Jul 2005 | B2 |
6929652 | Andrews et al. | Aug 2005 | B1 |
6936059 | Belef | Aug 2005 | B2 |
7037316 | McGuckin et al. | May 2006 | B2 |
7115101 | Cornelius et al. | Oct 2006 | B2 |
7507246 | McGuckin et al. | Mar 2009 | B2 |
7618434 | Santra et al. | Nov 2009 | B2 |
7819887 | McGuckin et al. | Oct 2010 | B2 |
8062317 | McGuckin et al. | Nov 2011 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8414543 | McGuckin et al. | Apr 2013 | B2 |
20010009980 | Richardson et al. | Jul 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20010031981 | Demarais et al. | Oct 2001 | A1 |
20020087187 | Mazzocchi et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020173812 | McGuckin et al. | Nov 2002 | A1 |
20020183783 | Shadduck | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20020193826 | McGuckin et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20030004540 | Linder et al. | Jan 2003 | A1 |
20030004541 | Linder et al. | Jan 2003 | A1 |
20030045898 | Harrison et al. | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030065355 | Weber | Apr 2003 | A1 |
20030100917 | Boyle et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030114880 | Hansen et al. | Jun 2003 | A1 |
20030191483 | Cooke et al. | Oct 2003 | A1 |
20040049223 | Nishtala et al. | Mar 2004 | A1 |
20040193206 | Gerberding et al. | Sep 2004 | A1 |
20050101988 | Stanford et al. | May 2005 | A1 |
20050177187 | Gray et al. | Aug 2005 | A1 |
20050216052 | Mazzocchi et al. | Sep 2005 | A1 |
20060074441 | McGuckin, Jr. et al. | Apr 2006 | A1 |
20060106407 | McGuckin, Jr. et al. | May 2006 | A1 |
20080319462 | Montague et al. | Dec 2008 | A1 |
20090082800 | Janardhan | Mar 2009 | A1 |
20100211087 | Osborne | Aug 2010 | A1 |
20100305592 | McGuckin et al. | Dec 2010 | A1 |
20110077673 | Grubac et al. | Mar 2011 | A1 |
20110282370 | Levine et al. | Nov 2011 | A1 |
20120035634 | McGuckin et al. | Feb 2012 | A1 |
20120116429 | Levine et al. | May 2012 | A1 |
20120239066 | Levine et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
1075903 | Feb 1960 | DE |
3640034 | May 1988 | DE |
8900494 | Mar 1989 | DE |
WO 0032265 | Jun 2000 | DE |
WO 2009029430 | Mar 2009 | DE |
0177782 | Apr 1986 | EP |
0452631 | Oct 1991 | EP |
0709110 | May 1996 | EP |
0815894 | Jan 1998 | EP |
56020839 | Feb 1981 | JP |
WO-9601591 | Jan 1996 | WO |
WO-9838926 | Sep 1998 | WO |
9923958 | May 1999 | WO |
WO-9956638 | Nov 1999 | WO |
WO-0007521 | Feb 2000 | WO |
WO-0007655 | Feb 2000 | WO |
WO-0145590 | Jun 2001 | WO |
0154754 | Aug 2001 | WO |
WO 2004096089 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20130190789 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
60214331 | Jun 2000 | US | |
60161124 | Oct 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12861110 | Aug 2010 | US |
Child | 13792026 | US | |
Parent | 11267379 | Nov 2005 | US |
Child | 12631787 | US | |
Parent | 09888149 | Jun 2001 | US |
Child | 11267379 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12631787 | Dec 2009 | US |
Child | 12861110 | US | |
Parent | PCT/US00/41355 | Oct 2000 | US |
Child | 09888149 | US |