1. Technical Field
This application relates to a rotational thrombectomy wire for clearing thrombus from native vessels.
2. Background of Related Art
In one method of hemodialysis, dialysis grafts, typically of PTFE, are implanted under the patient's skin, e.g. the patient's forearm, and sutured at one end to the vein for outflow and at the other end to the artery for inflow. The graft functions as a shunt creating high blood flow from the artery to the vein and enables access to the patient's blood without having to directly puncture the vein. (Repeated puncture of the vein could eventually damage the vein and cause blood clots, resulting in vein failure.) One needle is inserted into the graft to withdraw blood from the patient for transport to a dialysis machine (kidney machine); the other needle is inserted into the graft to return the filtered blood from the dialysis machine to the patient. In the dialysis machine, toxins and other waste products diffuse through a semi-permeable membrane into a dialysis fluid closely matching the chemical composition of the blood. The filtered blood, i.e. with the waste products removed, is then returned to the patient's body.
Over a period of time, thrombus or clots may form in the graft. Thrombus or clots may also form in the vessel. One approach to break up these clots and other obstructions in the graft and vessel is the injection of thrombolytic agents. The disadvantages of these agents are they are expensive, require lengthier hospital procedures and create risks of drug toxicity and bleeding complications as the clots are broken.
U.S. Pat. No. 5,766,191 provides another approach to breaking up clots and obstructions via a mechanical thrombectomy device. The patent discloses a basket having six memory wires expandable to press against the inner lumen to conform to the size and shape of the lumen. This device could be traumatic if used in the vessel, could denude endothelium, create vessel spasms and the basket and drive shaft could fracture.
U.S. Pat. No. 6,090,118 discloses a mechanical thrombectomy device for breaking up clots. The single thrombectomy wire is rotated to create a standing wave to break-up or macerate thrombus. U.S. Patent Publication No. 2002/0173812 discloses another example of a rotational thrombectomy wire for breaking up clots. The thrombectomy wire has a sinuous shape at its distal end and is contained within a sheath in a substantially straight non-deployed position. When the sheath is retracted, the distal portion of the wire is exposed to enable the wire to return to its non-linear sinuous configuration. The wire is composed of stainless steel. Actuation of the motor causes rotational movement of the wire, creating a wave pattern, to macerate thrombus. The device of the '812 patent publication is effective in atraumatically and effectively breaking up blood clots in the graft and is currently being marketed by Datascope, Inc. as the Pro-Lumen* thrombectomy catheter. In the marketed device, the wire is a bifilar wire, composed of two stainless steel wires wound side by side with a metal tip and an elastomeric tip at the distalmost end.
Although the sinuous wire of the '812 publication is effective in proper clinical use to macerate thrombus in dialysis grafts, it is not suited for use in native vessels. The device is indicated for use in grafts, and if improperly used the wire can kink or knot, and perhaps even break. The wire can also bend, making it difficult to withdraw after use, and can lose its shape. Additionally, the wire would be abrasive to the vessel and the vessel could get caught in the interstices of the wire. It could also cause vessels spasms which can cause the vessel to squeeze down on the wire which could break the wire. Similar problems would occur with the use of the device of the '118 patent in native vessels.
The need therefore exists for a rotational thrombectomy wire which can be used to clear clots or other obstructions from the native vessels. Such wire could advantageously be used not only in native vessels adjacent dialysis grafts but for deep vein thrombosis and pulmonary embolisms.
The present invention advantageously provides a rotational thrombectomy wire for breaking up thrombus or other obstructive material in a lumen of a native vessel.
The present invention provides a rotational thrombectomy wire comprising an inner core composed of a flexible material and a multifilar outer wire surrounding at least a portion of the inner core. The outer wire includes at least first and second metal wires wound side by side and having a sinuous shaped portion at a distal region. The inner core at a distal portion has a sinuous shaped portion within the sinuous portion of the outer wire. The inner core limits the compressibility of the multifilar wire. The multifilar wire is operatively connectable at a proximal end to a motor for rotating the wire to macerate thrombus within the vessel.
In a preferred embodiment, the inner core is composed of nylon material. In another embodiment, the inner core is composed of shape memory material wherein the inner core assumes its sinuous shape in the memorized configuration. In another embodiment, the core comprises at least two twisted wires of stainless steel.
The thrombectomy wire preferably further includes a polymeric material surrounding at least a distal portion of the multifilar wire. In a preferred embodiment, the polymeric material comprises a shrink wrap material attached to the multifilar wire. In another embodiment, the polymeric material is a coating over the multifilar wire.
The thrombectomy wire preferably comprises a flexible and blunt tip positioned at a distal end.
The inner core can have in one embodiment an enlarged distal end to form a connection portion and a metal tip secured to a distal end of the multifilar wire has a recess to receive the enlarged end of the inner core to frictionally engage the inner core.
In one embodiment, the first and second metal wires are wound together such that the coils of the first wire occupy the space between adjacent turns of the second wire and the coils of the multifilar outer wire have an inner diameter approximately equal to an outer diameter of the inner core.
The present invention also provides a rotatable thrombectomy wire for breaking up thrombus or other obstructive material in a lumen of a vessel comprising a multifilar outer wire including at least two metal wires wound side by side and operatively connectable at a proximal end to a motor for rotating the wire to macerate thrombus. The multifilar wire has a sinuous shaped portion at a distal region. A polymeric material surrounds at least a region of the sinuous portion of the multifilar outer wire to block the interstices of the multifilar wire.
In a preferred embodiment, the polymeric material comprises a shrink wrap material. In another embodiment, the polymeric material is a coating over the bifilar wire.
The present invention also provides a thrombectomy apparatus for breaking up thrombus or other obstructive material comprising a handle, a sheath, a battery, a motor powered by the battery, and a sinuous thrombectomy wire having at least one wire wound to form a coil and an inner core composed of a material to limit the compressibility of the coil. The coil has a sinuous portion and surrounds at least a distal region of the inner core. The inner core has a sinuous portion within the sinuous portion of the coil. The sinuous portion of the inner core and first and second wires are movable from a straighter configuration within the sheath for delivery to a sinuous configuration when exposed from the sheath.
In a preferred embodiment, a polymeric material surrounds at least a distal portion of the coil to cover the interstices of the coil. In one embodiment, the core is composed of a shape memory material wherein the memorized position of the core has a sinuous configuration. In another embodiment, the core is composed of Nylon. In another embodiment, the core is composed of at least two twisted wires of stainless steel.
The present invention also provides a method for breaking up thrombus or other obstructive material in a native vessel comprising:
providing a thrombectomy wire having an inner core composed of a flexible material and at least one outer wire surrounding at least a portion of the inner core, the outer wire has a sinuous shaped portion at a distal region and the inner core has a sinuous shaped portion within the sinuous portion of the outer wire, and a polymeric material surrounding at least a distal portion of the at least one outer wire to block the interstices of the at least one outer wire;
delivering the wire to the lumen of the native vessel such that the sinuous shaped portions of the inner core and bifilar outer wire are in a more linear configuration within a sheath;
exposing the sinuous portion of the inner core and the at least one outer wire; and
actuating a motor operatively connected to the thrombectomy wire so the sinuous portion of the at least one outer wire contacts the inner wall of the native vessel to macerate thrombus in the vessel.
Preferred embodiment(s) of the present disclosure are described herein with reference to the drawings wherein:
Referring now in detail to the drawings where like reference numerals identify similar or like components throughout the several views,
The distal region 16 of the bifilar wire 30 is formed into a sinuous or s-shape to contact the vessel wall as the wire rotates.
Although in the preferred illustrated and described embodiments, the outer wire is a multifilar wire in the form of a bifilar wire (two wires), a different number of wires could be wound to form the outer wire component of the thrombectomy wire of the present invention. In yet another embodiment the outer wire can comprise a single wound wire.
The bifilar wire 30 is preferably cold formed into an over-formed s-shape. The bifilar wire is heated, for example at about 670 degrees Fahrenheit, which removes residual stresses and changes the shape of the āsā so it warps back to its desired shape. This stress relief process makes the wire more dimensionally stable.
A tip 80, preferably composed of rubber, Pebax, or other elastomeric materials, is mounted at the distalmost tip of the wire 10 to provide the wire 10 with an atraumatic distal tip to prevent damage to the vessel wall during manipulation and rotation of the wire. A metal lip 60 is attached by laser welding or other methods to the distal end of the bifilar wire 30. The metal tip 60 has an enlarged dumbbell shaped head 62 to facilitate attachment to tip 80. The flexible tip 80 is attached by injection molding over the machined tip. Other attachment methods are also contemplated.
With continued reference to
The core 20 is composed of a flexible material which will limit the compressibility of the wire 30 during use. The core in the embodiment of
The shrink wrap material 50 covers a portion of the bifilar wire 30 proximal of the flexible tip 80 to block the interstices of the coil and provide a less abrasive surface. As shown in
In this embodiment, the core 120 is composed of a shape memory material, preferably Nitinol (a nickel titanium alloy), which has a memorized configuration of a sinuous or s-shape substantially corresponding to the s-shape of the bifilar wire 130. In the softer martensitic state within the sheath, core 120 is in a substantially linear configuration. This state is used for delivering the wire to the surgical site. When the wire is exposed to warmer body temperature, the core 120 transforms to its austenitic state, assuming the s-shaped memorized configuration. Cold saline is delivered through the catheter during delivery to maintain the core 120 in this martensitic state; the warming occurs by exposure to body temperature to transform the core 120 to the memorized state. Such memorized s-shape helps maintain the s-shape of the bifilar wire 130 during use. Cold saline can also be delivered to the core 120 at the end of the procedure to facilitate withdrawal.
The Nitinol core 120, like the Nylon core 20, is not compressible so it will also limit the compressibility of the bifilar wire 130. The Nitinol core 120 also will increase the stiffness of the wire 100, thereby reducing the chance of knotting and kinking and increase the strength of the wire to accommodate any spasms in the vessel. Its shape memory helps hold the amplitude of the bifilar wire 130 during use to maintain its force against the clot for maceration upon rotation. It preferably extends about 4-5 inches so it extends through the distal linear portion and sinuous portion of the wire 130, terminating at end 122. Alternately it can extend a shorter or longer length within the wire 130, or even the entire length as shown in the schematic view of
In another embodiment, a stainless steel braid, cable, or strand of wires twisted together provides the inner core member to limit compressibility of the coil (bifilar wire) and provide increased stiffness, strength and other advantages of the core enumerated above. This is shown in the embodiment of
The rotational thrombectomy wires 10, 100 and 200 of the present invention can be used with various thrombectomy catheters to macerate thrombus within the vessel. The rotational thrombectomy wire 10 (or wire 100 or 200) is contained within a flexible sheath or sleeve C of a catheter as shown in
A motor powered by a battery is contained within a housing to macerate and liquefy the thrombus into small particles within the vessel lumen. This is shown schematically in
Fluids, such as imaging dye can be injected through the port D into the lumen of the sheath C in the space between wire 10 (or 100 or 200) and the inner wall of the sheath C, and exiting the distal opening to flow into the vessel. This imaging dye provides an indication that fluid flow has resumed in the vessel. The lumen of the sheath can also receive cold saline to cool the Nitinol core 120 as described above.
The rotational thrombectomy wires 10, 100 and 200 of the present invention can also be used with the thrombectomy catheters having one or more balloons such as the balloon described in the '812 publication. The wires 10, 100 and 200 can further be used with other thrombectomy catheters.
While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the disclosure as defined by the claims appended hereto.
This application is a continuation of application Ser. No. 12/854,378, filed on Aug. 11, 2010, now U.S. Pat. No. 8,062,317, which is a divisional of prior application Ser. No. 11/017,112, filed on Dec. 20, 2004, now U.S. Pat. No. 7,819,887, which claims benefit of provisional application Ser. No. 60/628,623, filed Nov. 17, 2004, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3612058 | Ackerman | Oct 1971 | A |
3749085 | Willson | Jul 1973 | A |
4579127 | Haacke | Apr 1986 | A |
4745919 | Bundy | May 1988 | A |
4906244 | Pinchuk et al. | Mar 1990 | A |
4984581 | Stice et al. | Jan 1991 | A |
4990134 | Auth | Feb 1991 | A |
5025799 | Wilson | Jun 1991 | A |
5067489 | Lind et al. | Nov 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5131406 | Kaltenback | Jul 1992 | A |
5203772 | Hammerslag et al. | Apr 1993 | A |
5211183 | Wilson | May 1993 | A |
5213111 | Cook | May 1993 | A |
5217026 | Stoy | Jun 1993 | A |
5251640 | Osborne | Oct 1993 | A |
5253653 | Daigle | Oct 1993 | A |
5299580 | Atkinson | Apr 1994 | A |
5313967 | Lieber | May 1994 | A |
5314438 | Shturman | May 1994 | A |
5333620 | Moutafis et al. | Aug 1994 | A |
5341818 | Abrams | Aug 1994 | A |
5345945 | Hodgson | Sep 1994 | A |
5372144 | Martier | Dec 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5452726 | Burmeister | Sep 1995 | A |
5490859 | Mische | Feb 1996 | A |
5501694 | Ressemann et al. | Mar 1996 | A |
5514128 | Hillsmon | May 1996 | A |
5551443 | Sepetka | Sep 1996 | A |
5562275 | Weissenfluh | Oct 1996 | A |
5584843 | Wulfman | Dec 1996 | A |
5605162 | Mirzaee | Feb 1997 | A |
5653722 | Kieturakis | Aug 1997 | A |
5746701 | Noone | May 1998 | A |
5762637 | Berg et al. | Jun 1998 | A |
5766191 | Trerotola | Jun 1998 | A |
5797856 | Frisbie et al. | Aug 1998 | A |
5833631 | Nguyen | Nov 1998 | A |
5836893 | Urick | Nov 1998 | A |
5840046 | Deem | Nov 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5885227 | Finlayson | Mar 1999 | A |
5902263 | Patterson | May 1999 | A |
5902268 | Saab | May 1999 | A |
5910364 | Miyata | Jun 1999 | A |
5916166 | Reiss | Jun 1999 | A |
5924998 | Cornelius | Jul 1999 | A |
5938623 | Quiachon | Aug 1999 | A |
5971991 | Sunderland | Oct 1999 | A |
5984877 | Fleischhacker, Jr. | Nov 1999 | A |
6004279 | Crowley | Dec 1999 | A |
6019736 | Avellanet | Feb 2000 | A |
6080117 | Cornelius | Jun 2000 | A |
6083198 | Afzal | Jul 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6106485 | McMahon | Aug 2000 | A |
6113614 | Mears | Sep 2000 | A |
6165140 | Ferrera et al. | Dec 2000 | A |
6168570 | Ferrera et al. | Jan 2001 | B1 |
6185449 | Berg | Feb 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6217589 | McAlister | Apr 2001 | B1 |
6217595 | Shturman | Apr 2001 | B1 |
6251085 | Tezuka | Jun 2001 | B1 |
6251086 | Cornelius | Jun 2001 | B1 |
6254550 | McNamara | Jul 2001 | B1 |
6371928 | Mcfann | Apr 2002 | B1 |
6432066 | Ferrera et al. | Aug 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6458127 | Truckai et al. | Oct 2002 | B1 |
6475226 | Belef | Nov 2002 | B1 |
6482215 | Shiber | Nov 2002 | B1 |
6494890 | Shturman | Dec 2002 | B1 |
6572630 | McGuckin | Jun 2003 | B1 |
6579246 | Jacobson | Jun 2003 | B2 |
6579299 | McGuckin | Jun 2003 | B2 |
6595932 | Ferrera et al. | Jul 2003 | B2 |
6602207 | Mam | Aug 2003 | B1 |
6602264 | McGuckin | Aug 2003 | B1 |
6620114 | Vrba | Sep 2003 | B2 |
6620179 | Boock | Sep 2003 | B2 |
6656134 | Cornelius | Dec 2003 | B2 |
6660014 | Demarais | Dec 2003 | B2 |
6663613 | Evans et al. | Dec 2003 | B1 |
6669652 | Anderson | Dec 2003 | B2 |
6673025 | Richardson | Jan 2004 | B1 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6767353 | Shiber | Jul 2004 | B1 |
6790215 | Findlay | Sep 2004 | B2 |
6805676 | Klint | Oct 2004 | B2 |
6881194 | Miyata et al. | Apr 2005 | B2 |
6911016 | Balzum et al. | Jun 2005 | B2 |
6929633 | Evans et al. | Aug 2005 | B2 |
7074197 | Reynolds et al. | Jul 2006 | B2 |
7115101 | Cornelius et al. | Oct 2006 | B2 |
7309318 | Cassell et al. | Dec 2007 | B2 |
7470239 | Rooney et al. | Dec 2008 | B1 |
7494687 | Cox | Feb 2009 | B2 |
7819887 | McGuckin et al. | Oct 2010 | B2 |
8062317 | McGuckin et al. | Nov 2011 | B2 |
20010009980 | Richardson et al. | Jul 2001 | A1 |
20010031981 | Evans | Oct 2001 | A1 |
20020013548 | Hinchliffe | Jan 2002 | A1 |
20020095102 | Winters | Jul 2002 | A1 |
20020165567 | Shiber | Nov 2002 | A1 |
20020173812 | McGuckin, Jr. | Nov 2002 | A1 |
20030023190 | Cox | Jan 2003 | A1 |
20030139750 | Shinozuka et al. | Jul 2003 | A1 |
20030181828 | Fujimoto | Sep 2003 | A1 |
20030191483 | Cooke et al. | Oct 2003 | A1 |
20030216668 | Howland | Nov 2003 | A1 |
20040030266 | Murayama | Feb 2004 | A1 |
20040167436 | Reynolds | Aug 2004 | A1 |
20040167442 | Shireman | Aug 2004 | A1 |
20040167443 | Shireman | Aug 2004 | A1 |
20040181175 | Clayman | Sep 2004 | A1 |
20040193073 | DeMello | Sep 2004 | A1 |
20050054951 | Parins | Mar 2005 | A1 |
20050055040 | Tal | Mar 2005 | A1 |
20050137501 | Euteneuer et al. | Jun 2005 | A1 |
20060074441 | McGuckin, Jr. et al. | Apr 2006 | A1 |
20060142793 | Prudnikov et al. | Jun 2006 | A9 |
20070088323 | Campbell et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
WO-9838926 | Sep 1998 | WO |
WO 9923958 | Feb 1999 | WO |
WO-9956638 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20120035634 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
60628623 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11017112 | Dec 2004 | US |
Child | 12854378 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12854378 | Aug 2010 | US |
Child | 13276398 | US |