The present invention is directed to electrical connectors and more particularly to a connector assembly that is rotationally adjustable for use in medical and other applications.
Various safety and sanitary concerns generally require that many instruments and equipment for various medical and dental procedures are utilized for a single patient or a single event and then disposed of. However, not all equipment can or should be disposed of after a single use because of its sophistication and associated expense.
For example, equipment such as scalpels, cauterizers, and other surgical tools are brought into contact with the patient and are ordinarily discarded, although a power source or instrumentation used with the tool may be readily sterilizable and/or sufficiently removed from the patient and associated hazards to permit re-use. The reusable instrumentation may include a plug and cable that is readily and easily attached to the disposable tool with a connector assembly. The plug and cable provide a connection between the disposable tool and the power source and/or sophisticated electronic equipment.
However, because tools (e.g., a knife) often have a working feature (e.g., the blade) fixed in a particular orientation, a tool must ordinarily be manipulated and handled so that the working feature of a tool designed for a particular task can accomplish that task. This problem can become particularly cumbersome in surgical environments where surgeons must often rotate their arm or wrist to obtain a desired blade position. This can in turn be an uncomfortable or unnatural position, but one which must be maintained for long periods of time during surgery, leading to fatigue. Furthermore, manipulating tools connected to the cords and tubing often present in medical applications can introduce twisting or other undesirable situations that can disrupt concentration and otherwise needlessly complicate the surgical procedure.
Also, surgical environments are often wet, which can create the possibility of malfunction as a result of interference with electrical connections.
These and other drawbacks are found in current connectors.
What is needed is a connector assembly that permits the orientation of a tool or other device to be modified while alleviating the amount of rotation or other strain on the part of one using the tool.
What is also needed is a connector assembly that permits operation in a wet environment, such as allowing fluid to flow internally through the connector assembly while sealing electrical connections from a wet environment.
According to an exemplary embodiment of the invention, a rotationally adjustable connector assembly is disclosed. The connector assembly includes a connector housing, a base and a latch connected to the connector housing and the base. The latch is connected at a fixed position with respect to the connector housing and the base is co-axial with the latch. The base and latch are configured to permit the base to rotate about the latch, such that the base is thereby rotationally adjustable with respect to the connector housing.
According to another exemplary embodiment of the invention, a rotationally adjustable connector assembly includes a connector housing, a base, a latch connected to the connector housing and the base. The connector assembly also includes a plug insert positioned within the latch. The plug insert has a plurality of contacts for accomplishing an electrical connection between a tool attached to a first end of the connector assembly and a device body attached to a second end of the connector assembly; the plug assembly also has an enclosed channel to provide a fluid path passing internal the connector assembly. The latch is connected at a fixed position with respect to the connector housing and the base is co-axial with the latch. The base and latch are configured to permit the base to rotate about the latch in predetermined increments, such that the base is thereby rotationally adjustable with respect to the connector housing.
An advantage of certain exemplary embodiments described herein is that a connector assembly is provided that is rotationally adjustable to one of a plurality of indexed locations.
Another advantage is that certain exemplary embodiments described herein provide a connector assembly that is rotationally adjustable while accommodating a fluid line that passes through the connector assembly.
Other features and advantages of the present invention will be apparent from the following more detailed description of exemplary embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Where like parts appear in more than one drawing, it has been attempted to use like reference numerals for clarity.
Referring to
As shown in
Turning to
The contacts extending toward the base end of the connector assembly 10 are shown as solder cups 422 which provide a surface to which one or more wires can be soldered. Preferably the contacts are continuous from the solder cup 422 through the plug insert 400 to the pin 420 extending from the opposite end, each contact associated with a different circuit through which power or electrical signals can be carried. It will be appreciated that any suitable contacts may be used in conjunction with the plug insert 400. It will further be appreciated that while the contacts are shown as male members extending from the plug insert 400, the contacts could be female members such as sockets extending through the plug insert 400.
In one embodiment, the connector assembly 10 has a fluid path extending internally through it to carry a fluid toward or from the tool 40 through the connector assembly 10 from or toward the device body 20. This may be achieved by providing a plug insert 400 that includes a channel 440 passing internal to the plug insert 400. The channel 440 may further be defined by fittings 450 that extend axially away from the plug insert 400 for connection to tubing or other fittings that are part of a larger fluid path on either side of the connector assembly 10. A seal 460, preferably an o-ring, can be provided on the fittings 450 to minimize the risk that liquid passing through the channel 440 will escape into the connector assembly 10, which could cause an electrical short and/or result in undesirable leakage of biohazardous material as may be present in certain surgical environments.
Wires (not shown) associated with different circuits may be individually soldered or otherwise attached to the solder cups 422, which can then pass as a bundle through a cable window 650 that extends through the base 600 (best seen in
To prevent cross-connection between circuits when the connector assembly 10 is assembled, indicia such as circuit identifier numbers may be placed on the plug insert 400 adjacent each solder cup 422. It may also be desirable to incorporate a keying feature 410 (
The latch 300 is secured within the connector housing 100. As illustrated in
A spring 200 may be used to provide a compliance force that urges the wedge 340 against the edge of the aperture 120 to enhance the force of the wedge against the edge of the housing aperture 120 to reduce the likelihood that the latch 300 could slip from the connector housing 100. As with the latch 300 and the plug insert 400, the connector housing 100 and the latch 300 may be keyed so that connection can occur only when the connector housing 100 and the latch 300 are at a specific orientation (such as providing a keying feature 350 that is received by a corresponding recess (not shown) in the connector housing 100). This may further ensure proper orientation of the contacts of the plug insert 400 is maintained.
In one embodiment, the base 600 is at least partially received within the connector housing 100, but attaches partially over the latch 300. The base 600 can be attached in any manner that permits the base 600 to rotate with respect to the latch 300, and thus with respect to the connector housing 100 and the plug insert 400. Preferably, the connector assembly 10 can be rotationally adjusted in predetermined increments, such as fifteen, thirty, forty-five or sixty degrees, for example. In one embodiment, the connector assembly 10 is rotationally adjustable in predetermined increments of forty-five degrees.
As better seen with respect to
As best seen in
In one embodiment, the indexing units 310 include a notch 315 (better seen in
The connector assembly 10 may also establish a maximum amount of overall rotational adjustment. As shown in
In one embodiment, the connector assembly 10 is sealed to prevent moisture external to the connector assembly 10 from migrating into it. This can be accomplished by situating an o-ring 500 (
Turning to
Components of the connector assembly 10 can be manufactured by any suitable technique from any suitable material. The connector housing 100, latch 300, base 600 and plug insert 400 are generally injection molded from medical grade thermoplastic materials. The components of the connector assembly 10 may be provided in kit form for subsequent assembly.
Turning to
As illustrated, the base 600 forms a first end of the connector assembly 10 that can receive the tool 40, including a tool head 42 or other working feature having a fixed orientation. Any wires extending from the cable window 650 in the base 600 (
The connector housing 100 forms a second end of the connector assembly 10 that can be inserted into a receptacle insert 22 to complete the electrical circuit between the tool and the power source or instrumentation. The receptacle insert 22 may be formed integral with the device body 20 or may be a separate component that fits within or otherwise attaches to the device body 20. The pins 420 from the plug insert 400 positioned within the connector assembly 10 extend into corresponding sockets 24 in the body receptacle 22, while the plug insert fitting 450 can be received in a body passage 26 to continue a sealed internal passage for liquid which can be extracted through a fluid outlet 30 in the device body 20, which may, for example, be connected to a vacuum. Likewise, the sockets 24 can be connected via an external power source or instrumentation via a cable outlet 32. The receptacle insert may have a channel 28 or other device to receive a keying feature 130 formed in the connector housing 100 of the connector assembly 10. The connector housing 100 may further be retained within the device body, for example, by an undercut (not shown) in the device body 20 that engages the wedges 340 protruding through the apertures 120 in the connector housing 100.
It will be appreciated that while different aspects of the invention have been discussed as having male or female configurations for achieving physical and/or electrical contact, the configurations could be reversed, or other types of configurations for mating two parts could be used instead.
While the foregoing specification illustrates and describes exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4619496 | Forney et al. | Oct 1986 | A |
5611707 | Meynier | Mar 1997 | A |
7207844 | Peng | Apr 2007 | B2 |