The foregoing and other objects, features, and advantages of the invention will become more readily apparent from the following detailed description which proceeds with reference to the accompanying drawings, in which:
The principles of the present invention will now be described more fully hereinafter with reference to particular embodiments thereof. It should be recognized, however, that the invention may be embodied in many different forms and need not include every feature of the described embodiments. The invention should therefore not be construed as being limited to any one or more of the embodiments set forth herein, nor as requiring the specific features or a specific combination of features of these embodiments, except as may be expressly recited in the claims.
Referring to
O-rings 226, 226A extend around the valve stem 224 within grooves 227, 227A on opposite lateral sides of the inlet 210 and outlet 212. The o-rings 226, 226A prevent the gas from leaking out through the cavity ends and ensure that the gas from the gas inlet 210 travels to the gas outlet 212 when the valve 200 is open. They can also provide redundancy and dust protection. When the actuator 222 is located in an “on” position, the flow aperture 225 is arranged in communication with both the inlet 210 and the outlet 212 in order to permit a flow of the gas from the inlet 210 to the outlet 212.
A body o-ring 230 is provided within the valve body 202. Specifically, the body o-ring 230 can be located inside either an exit port of the gas inlet 210 or in an entry port of the gas outlet 212. The body o-ring 230 provides a seal between the valve body 202 and the valve stem 224, and prevents gas from leaking out of the inlet 210. Because the o-ring surrounds the inlet 210 of the valve body, it helps prevent gas leakage regardless of the position of the actuator 222. It can therefore perform a sealing function when the actuator is the “on” position (open valve) as well as when it is in the “off” position (closed valve). This configuration also prevents the body o-ring 230 from moving relative to the valve body 202 and thereby substantially eliminates the risk of the body o-ring 230 being cut or damaged by burs in the body 202. This is desirable because it is easier to machine the valve stem 224 to remove burs than to remove burs from the surface of the cavity 215.
In operation, the valve 200 is switched between an open (“on”) position and a closed (“off”) position through rotation (e.g., 90°) of the valve stem 224 via the actuator 222. In an open position, the flow aperture 225 is arranged in communication with the inlet 210 and permits a flow of gas from the inlet 210 to the outlet 212. In a closed position, communication between the flow aperture 225 and the inlet 210 is severed. The body o-ring 230 provides a seal between the valve body 202 and the valve stem 224. In the open position, the seal ensures the gas will travel through the flow aperture 225. In a closed position, the seal retains the gas within the inlet 210. O-rings 226, 226A provide additional sealing, redundancy, and dust protection by preventing dust or other foreign substances from entering the valve assembly around the plug and by preventing leaks when the inlet o-ring 230 becomes worn or damaged. They also prevent leakage from the outlet 220 through the cavity ends.
A preferred embodiment of the present invention provides advantages over the prior art on/off valve described above by enabling rotational adjustment of the valve body with respect to a device connection member. Not only does this facilitate proper orientation of an anti-siphon tube connected to the valve body in CO2 applications, but further allows positioning of the on/off actuating mechanism in an orientation that is convenient to the user in both CO2 and other applications.
The elongated, non-threaded section 270 is preferably configured to vent any compressed gas remaining in the bottle before the first threaded section is removed from the bottle. This can be accomplished, for example, using vent channels 272 arranged along an outer surface of the safety device or vent holes arranged through the safety device. In this way, compressed gas stored in the compressed gas tank 250 can be released in a safe manner if the valve 200 is detached from the tank 250, without the risk of the tank 250 acting as a projectile. The various embodiments of the present invention may also incorporate a device similar to the safety device 255. The safety device is explained in further detail in U.S. patent application Ser. No. 11/125,724, the contents of which are hereby incorporated by reference in their entirety.
In this embodiment, external threads of a connection end the anti-siphon tube 345 preferably mate with internal threads 354 of the tank connection member 350. The anti-siphon tube 345 is preferably arranged in a desired orientation with respect to the valve body 302 such that a desired upward position of the valve body 302 corresponds to an upward orientation of the end of the anti-siphon tube 345 within the CO2 tank. The anti-siphon tube 345 can then be rigidly affixed to the on/off valve 300 such as through loctite, welding, or other mechanical, chemical or other rigid connection mechanism. The tank is then preferably connected to the tank connection member 350 of the valve 300, such as through a threaded or other connection. The tank can be rigidly affixed to the valve 300 to prevent accidental removal of the tank from the valve 300.
The valve body 302 can further include a receptacle 360. The receptacle 360 is preferably configured to receive a stem 372 of a device connection member 370. The device connection member 370 can preferably be rotated within the receptacle 360 of the valve body 302. Ball bearing grooves 374 can be provided in the device connection member 370 with corresponding ball bearing grooves 364 arranged in the receptacle 360. Ball bearings 366 are preferably arranged in the ball bearing grooves 364, 374 to facilitate smooth rotation of the device connection member 370 within the receptacle 360. An o-ring 376 can be provided around the stem 372 to seal the area between the stem 372 and the receptacle 360.
A locking mechanism 380 can be provided to secure the device connection member 370 in a desired orientation with respect to the valve body 302. The locking mechanism 380 can, for instance, be one or more threaded plugs 382 arranged within plug holes 384 in the valve body 302. In this embodiment, the threaded plugs 382 can be configured to apply a locking force on the device connection member 370 when tightened and to relieve the locking pressure when loosened. The plug holes 384 can also be configured and arranged to permit ball bearings 366 to be inserted into the ball bearing grooves 364, 374 when the device connection member 370 is arranged in the receptacle 360. The threaded plugs 382 can be tightened, for instance, to apply a locking force onto the device connection member 370 by applying pressure on the ball bearings 366 arranged in the ball bearing grooves 364, 374.
A cavity 315 can be arranged through the valve body 302 to receive the actuating member 320. A flow aperture 325 is preferably arranged through the actuating member 320. When the actuating member 320 is rotated to an on (or open) position using the actuator 322, the flow aperture 325 provides a fluid path for the flow of compressed gas from the tank connection member 350 to the device connection member 370 through the fluid passageways 310, 312. A stop 386 can be provided to prevent rotation of the actuator 322 beyond a desired range of motion. A clip 328 can be provided to retain the actuating member in the cavity 315.
To adjust the on/off valve 300 for use with a particular pneumatic device, the device connection member 370 of the valve 300 can be fully threaded into the pneumatic device and the locking member 380 can be disengaged to permit rotation of the valve body 302 with respect to the device connection member 370. The valve body 302 is then preferably rotated to arrange it in a desired orientation with respect to the attached device. In CO2 applications where an anti-siphon tube 345 is provided, the valve body 302 is preferably oriented so that the attached anti-siphon tube 345 is arranged having its end facing upwards in the CO2 tank when the device is in its operating position. Once oriented, the locking mechanism 380 is preferably engaged to prevent accidental rotation of the valve body 302 with respect to the device connection member 370. In this manner, the valve 300 can be adjusted to permit proper operation with any one of multiple pneumatic devices. This process can be repeated if the operator wishes to use the compressed gas storage device and attached on/off valve 300 with another pneumatic device.
Various tamper-resistant devices can be implemented to help prevent accidental unlocking of the locking mechanism 380. The locking mechanism 380 can, for instance, be adapted to permit unlocking only with special tools or only by appropriate persons, such as qualified airsmiths. This may be desirable to prevent inexperienced users from tampering with the orientation of the valve assembly.
According to another aspect of the present invention, a vent 390 can be provided to release compressed gas accumulated in an attached device when the on/off valve 300 is switched to an off position. Referring specifically to
In operation, when the valve actuator 320 is switched to the off position (represented by the dashed lines), the flow aperture 325 is aligned with the vent port 394. Compressed gas accumulated in an attached device can thereby be released via the flow passageway 312 of the device connection member 370, the flow aperture 325 of the actuating member 320, and the flow aperture 393 in the vent plug 392. In this manner, residual compressed gas can be released from the attached device when the valve is switched to the off position. This can help prevent accidental operation of the attached pneumatic device and eliminates the need to manually vent residual compressed gas in other ways, such as by firing clearing shots when the attached device is a paintball gun. A burst disc 398 can also be provided on the on/off valve to permit safe release of compressed gas stored in the tank if it becomes over-pressurized.
Having described and illustrated the principles of the invention in a preferred embodiment and various alternative embodiments thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. Among other things, it should be readily apparent that while certain principles of the present invention have been described with respect to an on/off valve, they are equally applicable to other types of valves, such as pin valves or other valves. Other variations can also be made within the scope of the present invention. The invention should therefore be construed to cover all modifications and variations coming within the spirit and scope of the following claims.
This application is related to co-pending U.S. patent application Ser. No. 11/125,724, filed May 9, 2005, the contents of which are hereby incorporated by reference in their entirety.