The present invention relates to a method of rotationally balancing a rotating part.
Components that rotate at high speed must be balanced if undesirable vibration and associated stresses are to be avoided or reduced. This is particularly the case for rotors of gas turbine engines.
Bladed discs are commonly assembled by fitting removable and replaceable blades to a central rotor disc. It is then possible to balance the assembled discs by using the mass variation between individual blades, so that the positions of individual blades can be changed to eliminate any out-of-balance that occurs.
However, with integral bladed discs (known as “blisks”) and with integral bladed rings (known as “blings”), it is not possible to exchange individual blades, is and so a different balancing method is required.
A rotating out-of-balance can take two forms. The first is static unbalance in which the centre of mass lies away from the rotational axis so that, if the rotor is supported in a frictionless manner, it will always come to rest in a position in which the centre of mass lies directly below the axis. A known method of correcting static unbalance is either to add an appropriate mass to the rotor at a position diametrically opposite the detected centre of mass, or to remove material from the same side of the axis as the centre of mass. The effect of such adjustments is to move the centre of mass to the rotational axis.
The second kind of rotating out-of-balance is dynamic unbalance which arises if out-of-balance forces are generated in different directions at different positions along the rotational axis of the rotor. Such forces give rise to a rotating couple unbalance when the rotor is rotated, and this can cause problems even if the rotor is in static balance. The rotating couple unbalance can be determined from the “moment weights” of the blades (blade moment weight=blade mass×distance from rotation axis). As with static unbalance, it is known to correct couple unbalance by the addition or removal of material from the rotor.
However, in both cases correcting unbalance involves a weight penalty, either from the direct effect of adding a balancing mass, or because the removal of material means that balancing lands need to be provided from which controlled material removal can be effected, and these balancing lands add to the weight of the component as a whole. Nonetheless, with hollow-bladed blisks or blings any necessary balancing adjustments are generally relatively small as the relatively low mass of the hollow blades tends to avoid significant out-of-balance problems, and thus the weight penalty may not be too onerous.
A problem can arise, however, if the mass of the blades is increased. In this case, out-of-balance problems can be more significant, and the weight penalty can be greater.
The present invention is at least partly based on the realisation that a rotating part with heavier blades can benefit from an alternative approach to rotational balancing.
Accordingly, the present invention provides a method of rotationally balancing a rotating part, the method comprising the steps of:
providing a rotor hub or ring and a plurality of rotor blades for assembly onto the hub or ring, each blade having an unfilled internal cavity;
predicting the respective masses and moment weights of the blades with filled internal cavities;
assembling the rotor blades onto the hub or ring to form the rotating part, the relative positions of the assembled blades being determined on the basis of their predicted masses and moment weights with filled internal cavities; and
filling the internal cavities of the assembled rotor blades.
Advantageously, by determining the relative positions of the blades on the hub or ring using the predicted masses and moment weights, the resulting rotating part may be substantially balanced after the assembly and filling steps. It may then be possible to reduce the number and/or size of balancing lands, or avoid providing balancing lands at all. This can lead to weight and cost savings. Further, the pre-assembly predicting step can take less time and/or be less costly than conventional post-assembly balancing operations.
The methods may have any one or, to the extent that they are compatible, any combination of the following optional features.
The rotating part may be a blisk, the rotor blades being assembled onto a rotor hub in the form of a disk to form the blisk. Alternatively, the rotating part may be a bling, the rotor blades being assembled onto a rotor ring to form the bling. The blisk or bling can be for use in a gas turbine engine. Other possible rotating parts to which the method may be applied are: a helicopter rotor hub and blades, a wind turbine rotor hub and blades, a turbo-prop rotor hub and propeller blades, and a ship rotor hub and propeller blades.
Typically, the methods further comprise the step, between the providing and predicting steps, of determining (e.g. measuring) the masses and moment weights of the blades with unfilled internal cavities and the respective volumes of their internal cavities, the subsequent prediction of the respective masses and moment weights of the blades with filled internal cavities being based on the determined masses, moment weights and volumes.
The volumes of the internal cavities of the blades can be conveniently determined by gas pressure analysis, CT (Computerised, typically X-ray, Tomography) scanning or ultrasonic CMM (Coordinate Measuring Machine) inspection.
The shapes (i.e. the geometries) of the internal cavities of the blades may already be known with sufficient accuracy to allow the moment weights of the filled blades to be predicted without specifically determining the internal cavity shapes. However, the determining step may also include determining the respective shapes of the internal cavities. The respective masses and moment weights of the blades with filled internal cavities can then be predicted on the basis of the determined masses, moment weights, volumes and shapes. For example, the shapes of the internal cavities can be determined by CT scanning or ultrasonic CMM inspection. This is particularly convenient if CT scanning or ultrasonic CMM inspection is anyway used to determine the volumes of the internal cavities of the blades.
Blisks and Wings in particular can be susceptible to vibration as the natural damping of the dovetail attachment, of e.g. a conventional removable and replaceable compressor blade, is not present. Thus, advantageously, the internal cavities can be filled with vibration damping material. For example, the vibration damping material can be a viscoelastic damping material. However, other rotating parts to which the method can be applied may also benefit from having the internal cavities being filled with vibration damping material.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawing in which:
Hollow aerofoils are commonly used on civil fan blades, and may in future be used as the blades of compressor section blisks. Typically the blade cavity is formed during the manufacturing process of the blade by vacuum drawing. A rigid internal metallic structure may be included in the cavity to increase strength and stiffness, and stop the panels “panting”.
In order to increase damping, and hence reduce vibration on fan blades, a concept has been demonstrated where the hollow cavity of a fan blade is filled with damping material. For example, GB2450937 discloses a fan blade having a cavity into which is introduced a viscoelastic filler to adjust the frequency response of the blade.
Blisks and blings can be particularly susceptible to vibration as the natural damping of the dovetail attachment, of e.g. a conventional removable and replaceable compressor blade, is not present. Thus it can be beneficial to extend the viscoelastic filler damping concept to the hollow blades of blisks and blings.
However, when blades are assembled (e.g. welded) onto a disc/ring to form a blisk/bling, their radial position can vary, which can have an effect on the rotational balance of the blisk/bling. This is not generally a significant problem for unfilled blisks/blings as typically the majority of the space occupied by each blade is cavity, and a small change in radial position has a little effect on balance. On the other hand, with viscoelastically damped filled blades, the out of balance generated from a change in blade radial position can be greater, as the blades will have an increased mass from the subsequent filling process, the position of the filled mass being at a significant radial distance from the axis of rotation.
Further, in the manufacture of blisks and blings, although the individual blades can be weighed and moment weighed prior to being assembled (e.g. welded) to the disc/ring, the filling of the internal cavities of the blades after assembly can lead to uncertain or variable amounts of filler material being located in the blades. This can also lead to significant disturbance of the static or dynamic rotational balance of the blisk/bling.
One approach for balancing the blisk/bling might be to incompletely fill some or all of the blades in order to achieve rotational balance. That is, the filler material can also serve as a balancing aid whose mass is effectively added or removed as required. However, this approach adds manufacturing costs in terms of process control and can result in reduced overall damping performance.
Thus, according to embodiments of the present invention, blinks or blings having filled (e.g. viscoelastically damped) hollow blades are balanced by determining the internal volumes of the blades, and preferably also the internal geometries of the hollow blades, prior to filling, and then selecting their positions in the assembled blisk/bling on the basis of the predicted masses and moment weights of the filled blades.
The internal volume of each blade can be determined by gas pressure analysis. For example, a sealed known volume (V−1) of gas at a known pressure (P−1) can be released into the sealed cavity of the blade. The resulting volume (V−2) consists of (V−1) and the volume of the cavity (V-blade). A consequence of releasing the known volume of gas into the blade cavity is a drop in pressure to (P−2). Using the ideal gas laws, the relationship (P−1)/(P−2) can be used to calculate (V-blade).
Alternatively, the blade internal volume can be calculated using CT scanning data or ultrasonic CMM data. This approach may be desirable if CT scanning data or ultrasonic CMM inspection is anyway going to be used to measure the geometry of the blade cavity.
Advantages of the procedure may include:
While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. For example, although the invention has been described in relation to the rotational balancing of blisks and blings, it may also be applied to other rotating parts, such as propeller assemblies, wind turbines, hollow propellers and low weight flywheels. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
All references referred to above are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
1009216.1 | Jun 2010 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2202014 | Lougheed | May 1940 | A |
3111747 | Johnson | Nov 1963 | A |
3736638 | Stone, Jr. | Jun 1973 | A |
3927817 | Hamilton et al. | Dec 1975 | A |
4217397 | Hayase et al. | Aug 1980 | A |
4292375 | Ko | Sep 1981 | A |
4304821 | Hayase et al. | Dec 1981 | A |
4331284 | Schulz et al. | May 1982 | A |
4460314 | Fuller | Jul 1984 | A |
4522860 | Scott et al. | Jun 1985 | A |
4530197 | Rainville | Jul 1985 | A |
4583914 | Craig et al. | Apr 1986 | A |
4642863 | Schulz | Feb 1987 | A |
4655014 | Krecke | Apr 1987 | A |
4811890 | Dowling et al. | Mar 1989 | A |
4882823 | Weisert et al. | Nov 1989 | A |
5007225 | Teasdale | Apr 1991 | A |
5119531 | Berger et al. | Jun 1992 | A |
5143276 | Mansbridge et al. | Sep 1992 | A |
5240376 | Velicki | Aug 1993 | A |
5243758 | LeMonds et al. | Sep 1993 | A |
5253419 | Collot et al. | Oct 1993 | A |
5323953 | Adderley et al. | Jun 1994 | A |
5330092 | Gregg et al. | Jul 1994 | A |
5384959 | Velicki | Jan 1995 | A |
5419039 | Auxier et al. | May 1995 | A |
5469618 | LeMonds et al. | Nov 1995 | A |
5534354 | Gregg et al. | Jul 1996 | A |
5537861 | Seitelman et al. | Jul 1996 | A |
5544805 | Alassoeur et al. | Aug 1996 | A |
5570552 | Nehring | Nov 1996 | A |
5692881 | Leibrfied | Dec 1997 | A |
5723225 | Yasui et al. | Mar 1998 | A |
5821506 | Matsen | Oct 1998 | A |
5826332 | Bichon et al. | Oct 1998 | A |
5881459 | Yasui | Mar 1999 | A |
5941446 | Yasui | Aug 1999 | A |
6039542 | Schilling et al. | Mar 2000 | A |
6139278 | Mowbray et al. | Oct 2000 | A |
6224341 | Fricke | May 2001 | B1 |
6287080 | Evans et al. | Sep 2001 | B1 |
6331217 | Burke et al. | Dec 2001 | B1 |
6419146 | Buldhaupt et al. | Jul 2002 | B1 |
6467168 | Wallis | Oct 2002 | B2 |
6669447 | Norris et al. | Dec 2003 | B2 |
6720087 | Fried et al. | Apr 2004 | B2 |
6893211 | Eibl et al. | May 2005 | B1 |
6908285 | Henning et al. | Jun 2005 | B2 |
6979180 | Motherwell | Dec 2005 | B2 |
7025568 | Jones | Apr 2006 | B2 |
7070390 | Powell | Jul 2006 | B2 |
7090464 | Henning et al. | Aug 2006 | B2 |
7144222 | Lanni et al. | Dec 2006 | B2 |
7247003 | Burke et al. | Jul 2007 | B2 |
7287958 | Henning et al. | Oct 2007 | B2 |
7311500 | Rongong et al. | Dec 2007 | B2 |
7406849 | Ueno et al. | Aug 2008 | B2 |
7431197 | Franchet et al. | Oct 2008 | B2 |
7470114 | Bonnet | Dec 2008 | B2 |
7572101 | Mickol et al. | Aug 2009 | B2 |
7739072 | DeBlois et al. | Jun 2010 | B2 |
7753654 | Read et al. | Jul 2010 | B2 |
7979233 | DeBlois et al. | Jul 2011 | B2 |
8180596 | Henning et al. | May 2012 | B2 |
8186057 | Harrison et al. | May 2012 | B2 |
8382441 | Brennand et al. | Feb 2013 | B2 |
20020014101 | Yajima | Feb 2002 | A1 |
20030136815 | Debaisieux et al. | Jul 2003 | A1 |
20030156942 | Villhard | Aug 2003 | A1 |
20030164255 | Borroni-Bird et al. | Sep 2003 | A1 |
20040013523 | Berger et al. | Jan 2004 | A1 |
20040018091 | Rongong et al. | Jan 2004 | A1 |
20040191069 | Motherwell | Sep 2004 | A1 |
20060066133 | Ueno et al. | Mar 2006 | A1 |
20060255098 | Runyan | Nov 2006 | A1 |
20070065291 | Karafillis | Mar 2007 | A1 |
20070243070 | Matheny | Oct 2007 | A1 |
20070243408 | Straza | Oct 2007 | A1 |
20080025846 | Vance et al. | Jan 2008 | A1 |
20080260538 | Wilson et al. | Oct 2008 | A1 |
20090057488 | Goldfinch et al. | Mar 2009 | A1 |
20090057489 | Goldfinch et al. | Mar 2009 | A1 |
20090057718 | Suvorov et al. | Mar 2009 | A1 |
20090060718 | Goldfinch et al. | Mar 2009 | A1 |
20090304517 | Strother | Dec 2009 | A1 |
20100021693 | Goldfinch et al. | Jan 2010 | A1 |
20100040479 | Spangler et al. | Feb 2010 | A1 |
20100186215 | Jones et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0 130 583 | Jan 1985 | EP |
0 181 203 | May 1986 | EP |
0 209 867 | Jan 1987 | EP |
0 358 523 | Mar 1990 | EP |
0 418 179 | Mar 1991 | EP |
0 469 221 | Feb 1992 | EP |
0 354 631 | Jun 1992 | EP |
0 500 458 | Aug 1992 | EP |
0 520 827 | Dec 1992 | EP |
0 527 564 | Feb 1993 | EP |
0 549 172 | Jun 1993 | EP |
0 555 534 | Aug 1993 | EP |
0 582 795 | Feb 1994 | EP |
0 594 885 | May 1994 | EP |
0 765 711 | Apr 1997 | EP |
0 716 273 | Mar 1998 | EP |
0 926 312 | Jun 1999 | EP |
1 013 355 | Jun 2000 | EP |
1 085 288 | Mar 2001 | EP |
0 594 886 | Jul 2001 | EP |
1 160 752 | Dec 2001 | EP |
1 184 768 | Mar 2002 | EP |
1 024 330 | Nov 2002 | EP |
0 886 813 | Jan 2003 | EP |
1 327 489 | Jul 2003 | EP |
1 355 212 | Oct 2003 | EP |
1 433 993 | Jun 2004 | EP |
1 460 347 | Sep 2004 | EP |
1 460 507 | Sep 2004 | EP |
1 466 692 | Oct 2004 | EP |
1 491 980 | Dec 2004 | EP |
1 541 953 | Jun 2005 | EP |
1 561 901 | Aug 2005 | EP |
1 160 640 | Feb 2006 | EP |
1 653 165 | May 2006 | EP |
1 811 129 | Jul 2007 | EP |
2 014 384 | Jan 2009 | EP |
2 014 386 | Jan 2009 | EP |
2 014 387 | Jan 2009 | EP |
2 014 388 | Jan 2009 | EP |
2119871 | Nov 2009 | EP |
2 147 731 | Jan 2010 | EP |
2 223 766 | Sep 2010 | EP |
842937 | Jul 1960 | GB |
1 367 958 | Sep 1974 | GB |
1 437 510 | May 1976 | GB |
2 124 520 | Feb 1984 | GB |
2 154 287 | Sep 1985 | GB |
1 284 867 | Jul 1987 | GB |
2 193 306 | Feb 1988 | GB |
2 198 264 | Jun 1988 | GB |
2 202 619 | Sep 1988 | GB |
2 206 685 | Jan 1989 | GB |
2 211 593 | Jul 1989 | GB |
2 228 069 | Aug 1990 | GB |
2 249 615 | May 1992 | GB |
2 251 063 | Jun 1992 | GB |
2 261 032 | May 1993 | GB |
2 298 265 | Aug 1996 | GB |
2 305 720 | Apr 1997 | GB |
2 360 070 | Sep 2001 | GB |
2 371 095 | Jul 2002 | GB |
2 387 669 | Oct 2003 | GB |
2 391 270 | Feb 2004 | GB |
2 393 498 | Mar 2004 | GB |
2 397 855 | Aug 2004 | GB |
2 401 407 | Nov 2004 | GB |
2 402 716 | Dec 2004 | GB |
2 408 295 | May 2005 | GB |
2 411 462 | Aug 2005 | GB |
2 416 228 | Jan 2006 | GB |
2 438 185 | Nov 2007 | GB |
2 014 869 | Jan 2009 | GB |
2 450 934 | Jan 2009 | GB |
2 450 935 | Jan 2009 | GB |
A-2008-133825 | Jun 2008 | JP |
WO 9727045 | Jul 1997 | WO |
WO 0070271 | Nov 2000 | WO |
WO 0156332 | Aug 2001 | WO |
WO 0182018 | Nov 2001 | WO |
WO 0248615 | Jun 2002 | WO |
WO 03025469 | Mar 2003 | WO |
WO 03042607 | May 2003 | WO |
WO 03093916 | Nov 2003 | WO |
WO 2004102077 | Nov 2004 | WO |
WO 2005022953 | Mar 2005 | WO |
WO 2005045326 | May 2005 | WO |
WO 2005067619 | Jul 2005 | WO |
WO 2005069820 | Aug 2005 | WO |
WO 2005071510 | Aug 2005 | WO |
Entry |
---|
Feb. 21, 2013 Office Action issued in U.S. Appl. No. 12/216,505. |
Apr. 16, 2012 Office Action issued in U.S. Appl. No. 12/216,502. |
Search Report issued in British Application No. GB1009216.1 dated Sep. 2, 2010. |
Sep. 16, 2013 European Search Report issued in European Patent Application No. EP 10 17 0940. |
Sep. 2, 2009 European Search Report issued in European Application No. 09 25 1341. |
Dec. 14, 2010 Search Report issued in British Application No. GB1020063.2. |
Jul. 28, 2009 Search Report issued in British Patent Application No. 0907004.6. |
Jul. 27, 2010 Search Report issued in European Patent Application No. EP 10 15 7495.2. |
Jan. 19, 2010 Search Report issued in British Patent Application No. 0916687.7. |
May 19, 2010 European Search Report issued in related European Patent Application No. 09252779.5 (with Abstract). |
May 5, 2009 British Search Report issued in related British Patent Application No. GB0901235.2. |
Mar. 18, 2009 British Search Report issued in British Patent Application No. GB0901318.6. |
Oct. 7, 2008 European Search Report issued in European Patent Application No. 08 01 1077. |
Oct. 20, 2008 European Search Report issued in European Patent Application No. 08 01 1078. |
Oct. 21, 2008 European Search Report issued in European Patent Application No. 08 01 1079. |
Dec. 7, 2010 Search Report issued in British Application No. GB1013305.6. |
Sep. 15, 2009 Search Report issued in British Application No. GB0911416.6. |
May 11, 2011 Partial European Search Report issued in European Application No. 10 16 5255. |
Sep. 22, 2008 Search Report issued in British Application No. GB0808840.3. |
Aug. 28, 2007 Search Report issued in British Application No. GB0713700.3. |
Sep. 16, 2008 Search Report issued in British Application No. GB0813539.4. |
Mar. 7, 2008 Search Report issued in British Application No. GB0713699.7. |
Oct. 12, 2007 Search Report issued in British Application No. GB0713699.7. |
Jul. 26, 2011 Office Action issued in U.S. Appl. No. 12/453,762. |
Sep. 12, 2011 Office Action issued in U.S. Appl. No. 12/453,762. |
Dec. 21, 2011 Notice of Allowance issued in U.S. Appl. No. 12/453,762. |
Jul. 1, 2011 Office Action issued in U.S. Appl. No. 12/216,503. |
Dec. 27, 2011 Notice of Allowance issued in U.S. Appl. No. 12/216,503. |
Sep. 26, 2011 Office Action issued in U.S. Appl. No. 12/453,435. |
Feb. 25, 2011 Office Action issued in U.S. Appl. No. 12/216,505. |
Jun. 2, 2011 Office Action issued in U.S. Appl. No. 12/216,505. |
Nov. 23, 2011 Office Action issued in U.S. Appl. No. 12/216,505. |
Feb. 3, 2011 Office Action issued in U.S. Appl. No. 12/216,497. |
Jul. 20, 2011 Office Action issued in U.S. Appl. No. 12/216,497. |
Mar. 9, 2011 Notice of Allowance issued in U.S. Appl. No. 12/216,502. |
Dec. 6, 2010 Office Action issued in U.S. Appl. No. 12/216,502. |
U.S. Appl. No. 13/299,671 in the name of Strother, filed Nov. 18, 2011. |
U.S. Appl. No. 12/654,504 in the name of Jones et al., filed Dec. 22, 2009. |
U.S. Appl. No. 12/645,211 in the name of Strother, filed Dec. 14, 2009. |
U.S. Appl. No. 12/844,215 in the name of Harron, filed Jul. 27, 2010. |
U.S. Appl. No. 12/730,641 in the name of Strother, filed Mar. 24, 2010. |
U.S. Appl. No. 12/216,503 in the name of Goldfinch et al, filed Jul. 7, 2008. |
U.S. Appl. No. 13/186,850 in the name of Goldfinch et al, filed Jul. 20, 2011. |
U.S. Appl. No. 12/453,762 in the name of Goldfinch, filed May 21, 2009. |
U.S. Appl. No. 12/216,505 in the name of Strother, filed Jul. 7, 2008. |
U.S. Appl. No. 12/453,435 in the name of Strother, filed May 11, 2009. |
U.S. Appl. No. 12/796,231 in the name of Mason, filed Jun. 8, 2010. |
U.S. Appl. No. 13/008,323 in the name of Strother, filed Jan. 18, 2011. |
U.S. Appl. No. 12/720,253 in the name of Strother, filed Mar. 9, 2010. |
U.S. Appl. No. 12/720,351 in the name of Strother, filed Mar. 9, 2010. |
U.S. Appl. No. 12/216,502 in the name of Goldfinch et al., filed Jul. 7, 2008. |
U.S. Appl. No. 12/216,497 in the name of Goldfinch et al., filed Jul. 7, 2008. |
Jun. 29, 2012 Office Action issued in U.S. Appl. No. 12/654,504. |
Jan. 17, 2013 Office Action issued in U.S. Appl. No. 12/654,211. |
Mar. 7, 2012 Office Action issued in U.S. Appl. No. 12/453,435. |
Jun. 20, 2013 Office Action issued in U.S. Appl. No. 12/730,641. |
Jul. 9, 2013 Notice of Allowance issued in U.S. Appl. No. 12/453,762. |
Aug. 21, 2013 Office Action issued in U.S. Appl. No. 12/796,231. |
Sep. 3, 2013 Office Action issued in U.S. Appl. No. 12/654,211. |
Sep. 6, 2012 Office Action issued in U.S. Appl. No. 12/216,505. |
Mar. 12, 2012 Notice of Allowance issued in U.S. Appl. No. 12/216,503. |
Mar. 20, 2012 Office Action issued in U.S. Appl. No. 12/216,505. |
Oct. 10, 2013 Office Action issued in U.S. Appl. No. 12/216,505. |
Dec. 6, 2013 Search Report issued in European Patent Application No. Ep 11 17 4688. |
Dec. 2, 2013 Office Action issued in U.S. Appl. No. 12/730,641. |
Feb. 10, 2014 Office Action issued in U.S. Appl. No. 13/186,850. |
Number | Date | Country | |
---|---|---|---|
20110296686 A1 | Dec 2011 | US |