This is the U.S. national stage of application No. PCT/JP2021/002130, filed on Jan. 22, 2021. Priority under 35 U.S.C. § 119(a) and 35 U.S.C. § 365(b) is claimed from Japanese Application No. 2020-010788 filed Jan. 27, 2020, the disclosure of which is also incorporated herein by reference.
The present invention relates to a rotationally operated electronic component.
Patent Literature (hereinafter, referred to as PTL) 1, for example, discloses a rotationally operated electronic component with a first rotating electronic component and a second rotating electronic component placed far from each other in the axis direction.
The first rotating electronic component includes a shaft supporting member that is fixed to a first base, a first rotating object that is rotatably supported by the shaft supporting member, a first click spring that has an elastic section and is interposed between the shaft supporting member and the first rotating object, and a first click plate that has a plurality of click engagement holes in the circumferential direction and is placed facing the first click spring.
The second rotating electronic component includes a case and a second base that are fixed to the shaft supporting member, a second rotary knob and a second rotating object that are rotatably supported by the case, a lock pin that is the center of rotation of the second rotating object, a second click spring that has an elastic section and is interposed between the second rotating object and the case, and a second click plate that has a plurality of click engagement holes in the circumferential direction and is placed facing the second click spring.
The elastic sections of the first and second click springs are configured to repeat insertion/removal to/from the click engagement holes of the first and second click plates, so that an operator feels the click.
In the rotationally operated electronic component disclosed in PTL 1, for example, the operation torque varies between a case where the elastic section is removed from the click engagement hole and the other cases; accordingly, both the first and second rotating objects (two shafts) cannot acquire constant high operation torque.
This makes it difficult to hold the two shafts in desired positions. As another problem, for example, the rotation of one of the first and second rotating objects causes the other rotating object to rotate.
It is an object of the present invention to provide a rotationally operated electronic component in which both two shafts can acquire constant high operation torque.
To achieve the above object, a rotationally operated electronic component according to the present invention includes:
According to a rotationally operated electronic component of the present invention, it is possible for both two shafts to acquire constant high operation torque.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
As illustrated in
First block body 10 is placed on the one side of the axis direction (+X direction). First block body 10 includes cylindrical section 12. Cylindrical section 12 includes first hole 14 penetrating in the axis direction (X direction). First hole 14 is defined by inner circumferential surface 14a connecting axis-direction one-side end surface 12a of cylindrical section 12 and axis-direction the-other-side end surface 12b of cylindrical section 12.
Second block body 20 is placed on the other side of the axis direction (−X direction). Second block body 20 includes rectangular parallelepiped block section 22. Block section 22 includes second hole 24 penetrating in the axis direction (X direction).
Second hole 24 includes first space 241 located on the one side of the axis direction, second space 242 located on the other side of the axis direction, and third space 243 located in the middle of the axis direction. First space 241 is defined by annular surface 241a facing the right direction and inner circumferential surface 241b connecting surface 241a and axis-direction one-side end surface 22a of block section 22. Second space 242 is defined by surface 242a facing the left direction and inner circumferential surface 242b connecting surface 242a and axis-direction the-other-side end surface 22b of block section 22. Third space 243 is defined by inner circumferential surface 243a connecting surface 241a and surface 242a.
Electrical signal control section 31 is placed in a gap in the axis direction between first block body 10 and second block body 20. Electrical signal control section 31 corresponds to a “third block body” of the present invention.
Electrical signal control section 31 includes housing 311, seat section 312, and terminal 313 inputting and outputting an electrical signal. Housing 311 has a rectangular parallelepiped shape. Housing 311 accommodates a variable resistor (not illustrated) rotationally driven by outer operating shaft 40. Axis-direction the-other-side end surface 311a of housing 311 makes contact with axis-direction one-side end surface 22a of block section 22. Seat section 312 is placed on the one side (right side) of housing 311 in the axis direction. Seat section 312 includes seat surface 312a making contact with axis-direction the-other-side end surface 12b of cylindrical section 12.
Electrical signal control section 32 is placed on the other side of second block body 20 in the axis direction. Electrical signal control section 32 includes housing 321, and terminal 322 inputting and outputting an electrical signal. Housing 321 has a rectangular parallelepiped shape. Housing 321 accommodates a variable resistor (not illustrated) rotationally driven by inner operating shaft 50, and a switch (not illustrated). Axis-direction one-side end surface 321a of housing 321 makes contact with axis-direction the-other-side end surface 22b of block section 22.
Outer operating shaft 40 includes first cylindrical section 41 and first large-diameter cylindrical section 42. First cylindrical section 41 fits within first hole 14 to rotate about the axis. Radial-direction gap S11 with a predetermined width is provided between the inner circumferential surface of first hole 14 and the outer circumferential surface of first cylindrical section 41. The size of the shape of radial-direction gap S11 is set by the inner diameter of first hole 14 and the outer diameter of first cylindrical section 41. Axis-direction the-other-side end surface 41a of first cylindrical section 41 makes contact with seat surface 312a.
First large-diameter cylindrical section 42 is placed on the one side of first cylindrical section 41 in the axis direction (+X direction), and its diameter is larger than that of first cylindrical section 41. Annular surface 43 facing the left direction is placed between the outer circumferential surface of first cylindrical section 41 and the outer circumferential surface of first large-diameter cylindrical section 42. Axis-direction gap S12 with a predetermined width is provided between surface 43 and axis-direction one-side end surface 12a.
Inner operating shaft 50 extends in the axis direction (X direction). Inner operating shaft 50 penetrates through first cylindrical section 41, the inside of seat section 312, the inside of housing 311, second hole 24, and the inside of housing 321. Inner operating shaft 50 includes small diameter section 51, large diameter section 52, and rotation prevention section 53. Small diameter section 51 fits within first cylindrical section 41 to rotate about the axis. Large diameter section 52 is placed on the one side of small diameter section 51 in the axis direction (+X direction), and its diameter is larger than that of small diameter section 51. An operation knob (not illustrated) is attached to large diameter section 52. Rotation prevention section 53 is placed on the other side of small diameter section 51 in the axis direction (−X direction).
Axis-direction the-other-side end section 54 of inner operating shaft 50 protrudes in the left direction (−X direction) from axis-direction the-other-side end surface 321b of housing 321. Retaining ring 55 is attached to axis-direction the-other-side end section 54 of inner operating shaft 50.
Rotating body 60 includes second cylindrical section 61 and second large-diameter cylindrical section 62. Second cylindrical section 61 fits over rotation prevention section 53 and fits within third space 243. Radial-direction gap S21 with a predetermined width is provided between the outer circumferential surface of second cylindrical section 61 and the inner circumferential surface of third space 243. The size of the shape of radial-direction gap S21 is set by the inner diameter of third space 243 and the outer diameter of second cylindrical section 61. In the present embodiment, the shape of radial-direction gap S21 is set to the same size as the shape of radial-direction gap S11. Second large-diameter cylindrical section 62 fits over rotation prevention section 53 and fits within first space 241. Rotating body 60 rotates integrally with inner operating shaft 50 as second cylindrical section 61 and second large-diameter cylindrical section 62 fit over rotation prevention section 53.
Second large-diameter cylindrical section 62 is placed on the one side of second cylindrical section 61 in the axis direction, and its diameter is larger than that of second cylindrical section 61. Second large-diameter cylindrical section 62 includes annular surface 62a facing the left direction. Axis-direction gap S22 with a predetermined width is provided between surface 62a and surface 241a.
Next, exemplary first radial-direction elastic member 70 will be described with reference to
First radial-direction elastic member 70 is placed in radial-direction gap S11 with a predetermined width. First radial-direction elastic member 70 is formed by a rectangular metal plate with resilience. The metal plate has rectangular slits 70D that are long in the short side direction of the metal plate, and slits 70D are arranged parallel to each other in the long side direction at constant intervals. This forms a plurality of rectangular spring plates 70A with one ends connected to connecting strip 70B and the other ends connected to another connecting strip 70B. The longitudinal central area of each spring plate 70A is press-formed so as to have a curved projection on the same one side relative to the surface of the original metal plate. Spring plates 70A are rounded so that the longitudinal central area of each spring plate 70A is convex outward in the radial direction and both ends 70E and 70F of the metal plate in the long side direction are adjacent to each other, and this results in a cylindrical spring. In the cylindrical spring, connecting strips 70B act as fulcrums of spring plates 70A at both ends, and the longitudinal central areas of spring plates 70A act as the points of action.
First radial-direction elastic member 70 is set so that its smallest inner diameter (inner diameter of connecting strip 70B) is smaller than the outer diameter of first cylindrical section 41 in the free state. Thus, when first radial-direction elastic member 70 is mounted on first cylindrical section 41, gap 70C between both ends 70E and 70F of the metal plate in the long side direction spreads against the resilience, and first radial-direction elastic member 70 is held in first cylindrical section 41 by the resilience. In this state, the largest outer diameter of first radial-direction elastic member 70 (outer diameter in the longitudinal central areas of spring plates 70A) is set to be larger than the diameter of first hole 14.
When outer operating shaft 40 with first radial-direction elastic member 70 mounted is inserted into first hole 14, spring plates 70A are pressed by the inner circumferential surface of first hole 14, and the height of spring plates 70A in the radial direction decreases inward in the radial direction. Outer operating shaft 40 rotates with first radial-direction elastic member 70, and first radial-direction elastic member 70 slides and rotates against the inner circumferential surface of first hole 14. Accordingly, outer operating shaft 40 receives frictional resistance from the inner circumferential surface of first hole 14 via first radial-direction elastic member 70, thereby acquiring torque required for the rotation operation.
Next, second radial-direction elastic member 80 will be described with reference to
Second radial-direction elastic member 80 is placed in radial-direction gap S21 with a predetermined width. Second radial-direction elastic member 80 is set so that its smallest inner diameter (inner diameter of connecting strip 70B) is smaller than the outer diameter of second cylindrical section 61 in the free state. Thus, when second radial-direction elastic member 80 is mounted on second cylindrical section 61, gap 70C between both ends 70E and 70F of the metal plate in the long side direction spreads against the resilience, and second radial-direction elastic member 80 is held in second cylindrical section 61 by the resilience. In this state, the largest outer diameter of second radial-direction elastic member 80 (outer diameter in the longitudinal central areas of spring plates 70A) is set to be larger than the diameter of second hole 24.
Rotating body 60 rotates integrally with inner operating shaft 50 by fitting over rotation prevention section 53 of inner operating shaft 50. Second radial-direction elastic member 80 is mounted on second cylindrical section 61 of rotating body 60 as described above. When rotating body 60 with second radial-direction elastic member 80 mounted is inserted into second hole 24, spring plates 70A are pressed by the inner circumferential surface of second hole 24, and the height of spring plates 70A in the radial direction decreases inward in the radial direction. Inner operating shaft 50, which rotates integrally with rotating body 60, rotates with second radial-direction elastic member 80, and second radial-direction elastic member 80 slides and rotates against the inner circumferential surface of second hole 24. Accordingly, inner operating shaft 50 (rotating body 60) receives frictional resistance from the inner circumferential surface of second hole 24 via second radial-direction elastic member 80, thereby acquiring torque required for the rotation operation.
Next, first axis-direction elastic member 91 will be described with reference to
Next, second axis-direction elastic member 92 will be described with reference to
Incidentally, axis-direction gap S22 varies due to a factor such as a dimensional tolerance of a component. With large axis-direction gap S22, the frictional resistance from second axis-direction elastic member 92 decreases and the operation torque of inner operating shaft 50 decreases. With small axis-direction gap S22, the frictional resistance from second axis-direction elastic member 92 increases and the operation torque of inner operating shaft 50 increases. The variation in axis-direction gap S22 sometimes causes the operation torque of inner operating shaft 50 to fall outside the predetermined range.
Torque adjusting member 100 is placed in an axis-direction gap between axis-direction one-side end surface 62b of second large-diameter cylindrical section 62 and axis-direction the-other-side end surface 311a of housing 311, and adjusts the operation torque of inner operating shaft 50. Torque adjusting member 100 is a washer, for example. The operation torque of inner operating shaft 50 is adjusted by selectively using a washer that fits the axis-direction gap among a plurality of types of washers with different plate thicknesses.
Rotationally operated electronic component 1 according to the above embodiment includes: first block body 10 that is placed on one side of an axis direction and includes first hole 14; second block body 20 that is placed on another side of the axis direction and includes second hole 24; outer operating shaft 40 that includes first cylindrical section 41 fitting within first hole 14 to rotate about an axis; inner operating shaft 50 that extends in the axis direction, penetrates through first cylindrical section 41 and second hole 24, and fits within first cylindrical section 41 to rotate about the axis; rotating body 60 that includes second cylindrical section 61 fitting over inner operating shaft 50 to rotate integrally with inner operating shaft 50 and fitting within second hole 24 to rotate about the axis; first radial-direction elastic member 70 that is put, in a flexed state against resilience, in radial-direction gap S11 between an inner circumferential surface of first hole 14 and an outer circumferential surface of first cylindrical section 41; and second radial-direction elastic member 80 that is put, in a flexed state against resilience, in radial-direction gap S21 between an inner circumferential surface of second hole 24 and an outer circumferential surface of second cylindrical section 61.
With the above configuration, when outer operating shaft 40 is rotated, it receives frictional resistance from the inner circumferential surface of first hole 14 via first radial-direction elastic member 70, thereby acquiring torque required for the rotation operation. In addition, when inner operating shaft 50 is rotated, it receives frictional resistance from the inner circumferential surface of second hole 24 via second radial-direction elastic member 80, thereby acquiring torque required for the rotation operation. In such a manner, both of the two shafts (outer operating shaft 40 and inner operating shaft 50) can acquire constant high operation torque.
Rotationally operated electronic component 1 according to the above embodiment further includes: first axis-direction elastic member 91 that is put in axis-direction gap S12 in a flexed state against the resilience; and second axis-direction elastic member 92 that is put in axis-direction gap S22 in a flexed state against the resilience. This allows both of the two shafts to acquire higher operation torque.
Further, rotationally operated electronic component 1 according to the above embodiment includes a washer (torque adjusting member) that is placed in the axis-direction gap between second large-diameter cylindrical section 62 and housing 311 and adjusts the operation torque of the inner operating shaft. This allows the operation torque of inner operating shaft 50 to be adjusted by selectively using a washer that fits the above axis-direction gap among a plurality of types of washers with different plate thicknesses.
Next, variations of rotationally operated electronic component 1 according to the above embodiment will be described with reference to
In variation 2, the operation torque of inner operating shaft 50 is adjusted without using a washer (torque adjusting member).
The reason why axis-direction gap S22 is large as illustrated in
The reason why axis-direction gap S22 is small as illustrated in
According to the above variations, for example, it is possible to adjust the operation torque of inner operating shaft 50 by selectively using suitable rotating body 60 from a plurality of types of rotating bodies 60 including second large-diameter cylindrical sections 62 with different plate thicknesses.
The all of the above embodiments are merely examples to implement the present invention, and the technical scope of the present invention should not be interpreted as limited by these embodiments. In other words, the present invention can be implemented in various forms without departing from the gist or main features thereof.
In the above embodiments, rotationally operated electronic component 1 is provided with both first and second axis-direction elastic members 91 and 92, but the present invention is not limited to this, and rotationally operated electronic component 1 needs to be provided with either one of first and second axis-direction elastic members 91 and 92, for example, or may be provided with neither of first and second axis-direction elastic members 91 and 92 because adequate operation torque can be acquired by first and second radial-direction elastic members 70 and 80, for example.
The disclosure of Japanese Patent Application No. 2020-010788, filed on Jan. 27, 2020, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
The present invention is suitably used for an electronic device including a rotationally operated electronic component in which its two shafts are required to acquire constant high operation torque.
Number | Date | Country | Kind |
---|---|---|---|
2020-010788 | Jan 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/002130 | 1/22/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/153432 | 8/5/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9412538 | Fukunaga | Aug 2016 | B2 |
9741511 | Fukushima | Aug 2017 | B2 |
Number | Date | Country |
---|---|---|
2003178649 | Jun 2003 | JP |
2011209876 | Oct 2011 | JP |
Entry |
---|
International Search Report for International Application No. PCT/JP2021/002130; dated Mar. 30, 2021. |
Number | Date | Country | |
---|---|---|---|
20220357760 A1 | Nov 2022 | US |