This application relates generally to ovens used for cooking food product and, more specifically, to a rotisserie oven with a directional air flow baffle.
Various types of ovens are used for cooking food product. Rotisserie ovens are commonly used in the retail environment to cook chickens and other food products in a manner that permits store customers to view the food product during cooking. Rotisserie style cooking tends to result in grease, juices and food particles within the oven that require the oven to be cleaned regularly.
Many commercial ovens use fans to circulate heated air through the cooking cavity. Convection air flow inside an oven is a difficult process to perfect. The construction of the main cooking cavity is not typically conducive to efficient air flow. Ideally, air is directed away from a fan in a linear direction, scrubs an element (to increase and disperse temperature), then continues in a linear and unobstructed direction to the product. It would be desirable to provide a rotisserie oven with an improved air flow structure.
In some aspects, a rotisserie oven includes directional baffles that provide an effective cooking air flow.
In one aspect, a self-cleaning oven includes a cooking compartment and a self-cleaning system for cleaning the cooking compartment. A rotor is centrally located within the cooking compartment. A convection heating system includes an intake which separates the cooking compartment from a heating compartment while allowing air flow between the heating and cooking compartments. An exhaust facilitates air flow between the heating compartment and the cooking compartment. The exhaust includes a vent component through which air exits the heating compartment and enters the cooking compartment. A heating element is within the heating compartment. A convection fan within the heating compartment is configured to draw air from the cooking compartment through the intake into the heating compartment, direct air across the heating element, and expel air from the heating compartment through the vent component into the cooking compartment. A baffle is proximate to and extends outwardly beyond the vent component into the cooking compartment in a direction back toward the rotor to direct air entering the cooking compartment toward a center of the cooking chamber.
In another aspect, a rotisserie oven includes a cooking compartment and a rotor centrally located within the cooking compartment. A convection heating system includes an intake which separates the cooking compartment from a heating compartment while allowing air flow between compartments, an exhaust that facilitates air flow between the heating compartment and the cooking compartment, a heating element within the heating compartment, and a convection fan within the heating compartment. The fan is configured to draw air from the cooking compartment through the intake into the heating compartment, blow air across the heating element, and expel air from the heating compartment through the exhaust into the cooking compartment. A baffle is proximate the exhaust and has a length that is adjustable relative to the exhaust to adjust a length that the baffle extends beyond the exhaust and into the cooking chamber to direct heated air toward a center of the cooking chamber.
In another aspect, a method of directing heated air toward a center of a cooking chamber of a rotisserie oven including a rotor centrally located in the cooking chamber is provided. The method includes providing a convection heating system including an intake which separates the cooking compartment from a heating compartment while allowing air flow between the heating and cooking compartments. An exhaust facilitates air flow between the heating compartment and the cooking compartment. The exhaust includes a vent component through which air exits the heating compartment and enters the cooking compartment. A heating element is within the heating compartment. A convection fan is within the heating compartment. The fan is configured to draw air from the cooking compartment through the intake into the heating compartment, direct air across the heating element, and expel air from the heating compartment through the vent component into the cooking compartment. Heated air from the vent component is directed toward the rotor centrally located in the cooking compartment using a baffle that is proximate to and extends outwardly beyond the vent component into the cooking compartment in a direction back toward the rotor.
In another aspect, a self-cleaning oven includes a cooking compartment, a self-cleaning system for cleaning the cooking compartment and a rotor centrally located within the cooking compartment. A convection heating system includes an intake which separates the cooking compartment from a heating compartment while allowing air flow between the heating and cooking compartments. An exhaust facilitates air flow between the heating compartment and the cooking compartment. The exhaust includes a first vent component and a second vent component through which air exits the heating compartment and enters the cooking compartment. A heating element is within the heating compartment. A convection fan is within the heating compartment. The fan is configured to draw air from the cooking compartment through the intake into the heating compartment, direct air across the heating element, and expel air from the heating compartment through the first and second vent components into the cooking compartment. A first baffle is located to one side of the rotor. The first baffle is proximate to and extends outwardly beyond the first vent component into the cooking compartment in a direction back toward the rotor to direct air entering the cooking compartment toward a center of the cooking chamber. A second baffle is located to a side of the rotor opposite the one side where the first baffle is located. The second baffle is proximate to and extends outwardly beyond the second vent component into the cooking compartment in a direction back toward the rotor to direct air entering the cooking compartment toward a center of the cooking chamber.
Referring to
The rotisserie oven includes a self-cleaning feature that enables the oven to be cleaned during a self-cleaning mode of operation. For this purpose the oven may generally have hook-ups to a source of water and cleaning agent, and may also include a drain path and hook-up to enable the cleaning water to be purged during various points of the cleaning operation. The cleaning operation may include one or more stages, including pre-wash, wash and/or rinse stages. Different cleaning modes (e.g., which may provide different levels of cleaning) may be provided for user selection based upon the user's observation of how clean or dirty the oven is prior to cleaning.
In one implementation the self-cleaning feature includes the use of a spray arm assembly 60, shown in
Shown in
In some embodiments, it is desirable to locate the directional baffles 57 as close to the food product being heated as possible. However, the food products being heated may be of different sizes. In some embodiments, this range of food product sizes is taken in consideration when selecting a length of the directional baffles 57. In one implementation, each directional baffle extends beyond the cover/plate 48 into the cavity by about 1 to 1.5 inches (e.g., 1.25 inches). The directional baffles may be in an adjustable manner so that this distance can be adjusted if desired.
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation. For example, the rotisserie oven can be stacked as shown in
This application claims the benefit of U.S. Application No. 61/021,117, filed Jan. 15, 2008, and herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61021117 | Jan 2008 | US |