1. Field of the Invention
The present invention generally relates to rotodynamic or centrifugal pumps, and more particularly to permanent magnet coupling pumps.
2. Discussion of the Prior Art
In many pumping applications, it is desirable to avoid rotating seals. Rotodynamic pumps have been developed with a magnet coupling that utilizes an impeller that is driven via a non-contacting permanent magnet coupling in a radial magnet orientation. Such pumps frequently are referred to as being sealless, but actually include inner and outer magnets separated by a canister that is sealed with a static seal. Permanent magnet coupled rotodynamic pumps typically are of one of three types, separately coupled, close coupled or vertical submerged.
Separately coupled permanent magnet coupled rotodynamic pumps generally utilize end suction via an axial inlet, are of single stage or multistage configuration, and include an overhung impeller design. The overhung impeller design has the impeller mounted on a rotor assembly which contains a first magnet ring of a magnet coupled drive spaced from the pumping element. A second magnet ring is mounted on the rotatable shaft of a frame that is coupled to a motor or power drive device. The pump, the frame that supports the rotatable shaft, and the power drive device generally are mounted on a common base plate.
Close coupled permanent magnet coupled rotodynamic pumps tend to be of a somewhat similar construction to the separately coupled version, except that the second magnet ring is mounted directly on the driver shaft of the power drive device.
Vertical submerged permanent magnet coupled rotodynamic pumps generally also are of somewhat similar construction to the separately couple version, but the impeller is mounted on the lower end of an elongated shaft which is overhung from its drive bearing supports. The drive section utilizes permanent magnets or an eddy current drive system to transmit power to the elongated shaft and impeller. This type of sealless pump uses a standard motor to drive the second magnet ring, which in turn drives the first magnet ring. A containment shell or canister that contains the process fluid sealingly separates the magnet components. The containment shell in the drive permits pumping from a sealed vessel using a submergible pump.
Radial magnetic couplings that utilize permanent magnets are common in each of the above rotodynamic (aka kinetic, centrifugal) pumps. The radial magnetic couplings consist of three main components: a larger, outer coupling component (aka an outer magnet or outer rotor) with multiple permanent magnets on its inner surface; a smaller, inner coupling component (aka an inner magnet or inner rotor) with multiple permanent magnets on its outer surface; and a containment canister (aka a can, shell, shroud, or barrier) separating the inner and outer components and forming a boundary for the fluid chamber. The magnets on the inner and outer components are disposed in alignment with each other to match up and synchronize the inner and outer components, such that as one component is rotated, the other component is synchronized and forced to follow, whereby the pump impeller or pumping rotor is driven. But neither of the inner or outer coupling components physically touches the other, and they rotate in separate environments, separated by the canister.
The radial magnetic couplings are of two configurations, “outer drive” and “inner drive”. Most radial magnetic couplings in rotodynamic pumps have an outer drive arrangement in which the outer coupling component is outside of the pump's fluid chamber, and usually is driven by an external power source, such as a motor. In such configurations, the inner coupling component is disposed inside the pump's fluid chamber and is connected to the impeller. The containment canister provides the boundary of the pump's fluid chamber, with the fluid chamber being inside of the canister.
Although less common, some pumps have an inner drive arrangement, which utilizes the same three general components, but the roles are reversed. The inner coupling component is outside of the pump's fluid chamber, and usually is driven by an external power source, such as a motor, while the outer coupling component is inside the pump's fluid chamber and is connected to the impeller. A containment canister again provides the boundary of the pump's fluid chamber, with the fluid chamber being outside of the canister. All of the inner drive rotodynamic pumps known to the inventors have a common configuration with respect to the location of the impeller relative to the magnetic coupling, with the impeller being positioned axially forward of the magnetic coupling.
With the impeller being positioned forward of the magnetic coupling, such inner drive pumps have several disadvantages. The pumps are rather large, given that the axial space for the impeller is separate and forward of the axial space for the magnetic coupling. The relatively large pumps further require large and more expensive components, a large volume of space for mounting, and such pumps are heavier and more difficult to handle. The inner drive pumps also often experience an impeller thrust imbalance. The impeller is subjected to a high forward thrust load, due to the higher discharge pressure acting upon a relatively large rear surface of the impeller.
The prior art pumps also tend to have additional internal cavities where fluid can stagnate and which often must be flushed out between usages. In addition, the prior art pumps do not provide very effective cooling for the canister, because the canister is not directly exposed to the incoming cool liquid that enters the pump through the inlet port. Canister cooling for such pumps is particularly important when the canister is made from electrically conductive materials, because such materials generate eddy current heating when the magnetic coupling is rotating.
Many of the existing inner drive permanent magnet coupled pump designs include an internal recirculation path, which allows a small amount of pumped fluid to flow from a higher pressure area (near the discharge port) to a lower pressure area (near the inlet port). Such a recirculation path serves three purposes: to prevent stagnation or solids accumulation within the pump; to improve cooling and/or lubrication of the impeller support bearings; and to improve cooling of the canister. The last purpose only applies when the canister is made of electrically conductive material and is subjected to eddy current heating when the magnetic coupling is rotating.
The details of existing recirculation paths vary widely among different pump designs and incorporate many different section designs. However, such internal recirculation paths tend to be rather complex, because they need to flow through a magnet chamber located deep behind the impeller. The internal recirculation paths often include some sections where all the surfaces are stationary. The stationary sections more easily allow product stagnation and/or accumulation of solids.
Many of the existing inner drive permanent magnet coupled pump designs include an internal recirculation path, which allows a small amount of pumped fluid to flow from a higher pressure area (near the outlet port) to a lower pressure area (near the inlet port). Such a recirculation path serves three purposes: to prevent stagnation or solids accumulation within the pump; to improve cooling and/or lubrication of the impeller support bearings; and to improve cooling of the canister. The last purpose only applies when the canister is made of electrically conductive material and is subjected to eddy current heating when the magnetic coupling is rotating.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description and drawings that follow, as well as will be learned by practice of the claimed subject matter.
The present disclosure generally provides a rotodynamic pump with a radial, inner drive permanent magnet coupling disposed inside of an impeller. The rotodynamic pump has a casing defining a pumping cavity, an inlet port connected to the pumping cavity, and a discharge port connected to the pumping cavity. The pump has an impeller being rotatable about a rotational axis and disposed within the pumping cavity, the impeller having a pumping region generally in a pumping plane that is perpendicular to the rotational axis and aligned with a permanent magnet coupling that includes outer magnets that are connected to the impeller and at least partially aligned with the pumping region of the impeller. The pump also includes inner magnets that are connected to an inner magnet ring and are axially aligned with the outer magnets. The pump also includes a canister that is sealed to the casing and separates the outer magnets from the inner magnets.
Thus, all or part of the magnet coupling inside the impeller is disposed within the pumping plane and is axially aligned with the pumping region of the impeller. As such, the impeller has a large central opening for the magnet coupling and the outer magnets are disposed within the central opening and connected to the impeller.
The present disclosure further provides a permanent magnet coupling in a rotodynamic pump that includes an internal circulation cooling flow path between the canister and the impeller. The internal circulation cooling flow path allows a small amount of pumped fluid to flow from a higher pressure area near the discharge port to a lower pressure area near the inlet port. The details of the path sections can vary, but the disclosure includes preferred sections. The first section is a chamber behind the impeller that is disposed between the impeller and a canister flange. The second section includes grooves in surfaces of a rear bushing. The third section includes a gap between the outer magnets and the canister. Some embodiments include a fourth section having grooves in surfaces of a front bushing. Such cooling paths avoid stagnation and accumulation of solids, while also permitting ready and more complete flushing of the entire pump when utilized in applications that require pumps to be flushed between uses.
The present disclosure generally provides a rotodynamic pump with a radial, inner drive permanent magnet coupling disposed inside of an impeller. The rotodynamic pump has a casing defining a pumping cavity, an inlet port connected to the pumping cavity, and an outlet port connected to the pumping cavity. The pump has an impeller being rotatable about a rotational axis and disposed within the pumping cavity, the impeller having a pumping region generally in a pumping plane that is perpendicular to the rotational axis and aligned with a permanent magnet coupling that includes outer magnets that are connected to the impeller and at least partially aligned with the pumping region of the impeller. The pump also includes inner magnets that are connected to an inner magnet ring and are axially aligned with the outer magnets. The pump also includes a canister that is sealed to the casing and separates the outer magnets from the inner magnets.
The magnet coupling also may include some variations, such as being of a short profile that fits entirely within the length of the pumping region of the impeller or being a bit longer and having a portion of the magnet coupling within the length of the pumping region of the impeller. Applications having higher torque requirements may be addressed with use of such longer couplings where the magnet coupling may be at least partially disposed within the pumping region of the impeller. In addition, the canister may be of a multi-part or single part construction.
The present disclosure further provides a permanent magnet coupling in a rotodynamic pump that includes an internal circulation cooling flow path between the canister and the impeller. The internal circulation cooling flow path allows a small amount of pumped fluid to flow from a higher pressure area near the outlet port to a lower pressure area near the inlet port. The details of the path sections can vary, but the disclosure includes preferred sections. The first section is a chamber behind the impeller that is disposed between the impeller and a canister flange. The second section includes grooves in surfaces of a rear bushing. The third section includes a gap between the outer magnets and the canister. Some embodiments include a fourth section having grooves in surfaces of a front bushing. Such cooling paths avoid stagnation and accumulation of solids, while also permitting ready and more complete flushing of the entire pump when utilized in applications that require pumps to be flushed between uses.
Another potential advantage is that pumps using the subject matter of the present disclosure have fewer internal cavities where fluid can stagnate. This is especially advantageous in applications where such stagnation causes problems, such as when batch cross-contamination must be minimized, or in hygienic applications, where microbial growth must be prevented, and in any applications where the pumps must be flushed out completely between usages.
A further advantage can be realized in that the designs can provide exceptionally effective cooling for the canister, through the end portion of the canister, which is directly exposed to the cool liquid entering the pump through the inlet port. Canister cooling can be particularly important when the canister is made from electrically conductive materials, because such materials generate eddy current heating when the magnetic coupling is rotating.
Other potential advantages include that the pumps have an internal circulation path that is very simple and effective, because there is no deep chamber behind the impeller through which the fluid must circulate. Also, the internal circulation path is completely dynamic, such that no sections of the path consist of totally stationary surfaces. Thus, it is advantageous that pumps avoid having stationary sections of circulation cooling paths that more easily allow product stagnation and/or accumulation of solids.
A further advantage is that the net thrust load on the impeller is easier to balance than with typical designs, because of the large opening in the center of the impeller. The large opening reduces the surface area of both the front and rear of the impeller. Given that the higher discharge pressure acts upon the rear surface area of the impeller and creates a forward thrust load, the reduced rear surface area in this design reduces the forward thrust load. Similarly, the pressure exerted in the inlet port by the fluid entering the pump acts on the reduced front surface area of the impeller, reducing the rearward load applied to the impeller. The net effect is a reduction in forward thrust, because the discharge pressure is higher than the inlet pressure. The net thrust load on typical impellers is forward, and the reduced forward load helps to balance the thrust load on the impeller. A more balanced impeller thrust load is advantageous for pump wear life and it may avoid the need for heavy-duty thrust bearings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and provided for purposes of explanation only, and are not restrictive of the subject matter claimed. Further features and objects of the present disclosure will become more fully apparent in the following description of the preferred embodiments and from the appended claims.
In describing the preferred embodiments, reference is made to the accompanying drawing figures wherein like parts have like reference numerals, and wherein:
It should be understood that the drawings are not to scale. While some mechanical details of a rotodynamic pump with permanent magnet coupling inside the impeller, including details of fastening means and other plan and section views of the particular components, have not been included, such details are considered well within the comprehension of those of skill in the art in light of the present disclosure. It also should be understood that the present invention is not limited to the example embodiments illustrated.
Referring generally to
Turning to a first example embodiment in
The casing 4 is connected to an adapter 10, which facilitates mounting to a motor 12 for a close-coupled drive configuration 14. Disposed in sealing engagement between the adapter 10 and the casing 4 is a canister 16 having a peripheral radial flange 18 that is sealed to the casing 4 by a first static seal 20. The static seal 20 may be constructed as an elastomeric o-ring, or preformed or liquid gasket materials or the like, which may be employed to enhance the connection between the components.
The canister 16 further includes a cylindrical portion 22 that has a rear opening 24, and a front end portion 26. The end portion 26 has a central aperture 28. The peripheral radial flange 18, cylindrical portion 22 and end portion 26 of the canister 16 may be constructed of any of a variety of rigid materials, and the material is typically chosen based on the medium to be pumped, but preferably is non-magnetic and constructed of stainless steel, such as alloy C-276, or of plastic, composite materials or the like. The canister 16 may be integrally fabricated from a single piece or may be fabricated, such as by welding together separately formed portions. A nose cone 30 has a threaded bore 32 that receives a fastener 34, such as a bolt, that passes through the aperture 28 in the end portion 26 of the canister 16 to connect the nose cone 30 to the canister 16. The nose cone 30 also is sealed to the canister 16 by a second static seal 35 that may be of similar construction to the first static seal 20.
The casing 4, the canister 16 and the nose cone 30 define an interior pumping cavity 36 that is in communication with the inlet port 6 and outlet port 8. An impeller 38 is disposed within the interior pumping cavity 36 and includes an impeller body 40 and vanes 42 extending therefrom, with a pumping region indicated by the axial length of the vanes 42. The impeller 38 has a partially shrouded construction and provides mixed axial and radial flow. It is desirable for the impeller 38 to have some form of thrust bearing surfaces. The impeller body 40 has a central opening 44 that includes a rear well 46 that together with an overlying magnet protection sleeve 60, discussed below, provides first axial and radial thrust bearing surfaces, and a front well 48 that provides second axial and radial thrust bearing surfaces. The first well 46 receives a rear bushing 50 and the second well 48 receives a front bushing 52. Alternative or additional provision for rearward and/or forward thrust bearings also may be employed, and thrust bearings may be integrally or separately provided to retain appropriate positioning of components to reduce vibration and wear. In this example, the impeller 38 is rotatably coupled to the canister 16 via the bushings 50, 52, that engage the thrust bearing surfaces provided by the rear and front wells 46, 48, and the impeller 38 rotates about a rotational axis R. Alternatives to the bushings 50, 52 may be utilized and the bushings could be initially fixed to or otherwise engage the canister 16 or the impeller 38 during assembly of the pump 2.
To drive the impeller 38 in this first example pump 2, a permanent magnet coupling 54 is disposed within the central opening 44. The permanent magnet coupling 54 includes outer permanent magnets 56 connected to an outer magnet ring 58 that preferably is constructed of magnetic material and is disposed in the central opening 44 and connected to the impeller 38. Outer magnets 56 may be of any configuration, but are preferably rectangular and are preferably connected to the outer magnet ring 58 by chemical means, such as by epoxy or adhesives, or may be attached by suitable fasteners, such as by rivets or the like, with the magnets 56 being protected from the pumped fluid by a thin magnet protection sleeve 60 that, in this example, provides protection in both the axial and radial directions. The outer magnets 56 are at least partially axially aligned with the pumping region of the impeller 38. Thus, a plane that is perpendicular to the rotational axis of the impeller 38, and that passes through the pumping region and at least a portion of the permanent magnet coupling 54, may for convenience be referred to as a pumping plane.
The permanent magnet coupling 54 further includes inner permanent magnets 62 connected to an inner magnet ring 64 that is in the configuration of a hub that is connected to a shaft 66 on the drive motor 12 by a key 68. The inner magnets 62 are in close proximity to, axially aligned with, but separated from the outer magnets 56 by the relatively thin-walled cylindrical portion 22 of the canister 16. When the shaft 66 of the drive motor 12 rotates, it causes the inner magnets 62 to rotate which, via a magnetic coupling with the outer magnets 56, causes the impeller 38 to rotate.
As best seen in
To drive the impeller 38 in this first example pump 2, a permanent magnet coupling 54 is disposed within the central opening 44. The permanent magnet coupling 54 includes outer permanent magnets 56 connected to an outer magnet ring 58 that preferably is constructed of magnetic material and is disposed in the central opening 44 and connected to the impeller 38. Outer magnets 56 may be of any configuration, but are preferably rectangular and are preferably connected to the outer magnet ring 58 by chemical means, such as by epoxy or adhesives, or may be attached by suitable fasteners, such as by rivets or the like, with the magnets 56 being protected from the pumped fluid by a thin magnet protection sleeve 60 that, in this example, provides protection in both the axial and radial directions. The outer magnets 56 are at least partially axially aligned with the pumping region of the impeller 38. Thus, an imaginary plane that is perpendicular to the rotational axis of the impeller 38, and that passes through the pumping region and at least a portion of the permanent magnet coupling 54, may for convenience be referred to as a pumping plane.
The close-coupled drive configuration 14 and connection of the inner magnet ring 64 to the shaft 66 of the drive motor 12 allows for a shorter length, more space efficient and lighter weight, drive and pump installation. This is further enhanced by the relatively short magnet coupling 54 that is within the pumping region of the impeller 16, generally in a pumping plane that is perpendicular to the rotational axis R of the impeller 38.
Turning to a second example embodiment in
The casing 104 is connected to an adapter 110, which facilitates mounting to a motor 112 for a close-coupled drive configuration 114. Disposed in sealing engagement between the adapter 110 and the casing 104 is a canister 116 having a peripheral radial flange 118 that is sealed to the casing 104 by a first static seal 120. The static seal 120 may be constructed in a similar manner to that described above with respect to the first example embodiment. The canister of any of the examples also may be constructed with surface finishes in the interior of the pump that are acceptable for use in hygienic applications, such as by use of non-metallic or highly polished suitable metallic finishes.
The canister 116 further includes a cylindrical portion 122 that has a rear opening 124, and a front end portion 126. The end portion 126 presents a convex surface to the fluid that enters through the inlet port 106 to avoid turbulence. The end portion 126 effectively presents a nose cone that is a part of the sealed structure of the canister 116. The peripheral radial flange 118, cylindrical portion 122 and end portion 126 of the canister 116 are configured as a single piece and may be constructed of any of a variety of rigid materials, and in any suitable manner, such as described above with respect to the first example embodiment.
The casing 104 and the canister 116 define an interior pumping cavity 136 that is in communication with the inlet port 106 and outlet port 108. An impeller 138 is disposed within the interior pumping cavity 136 and includes an impeller body 140 and vanes 142 extending therefrom. The impeller 138 is constructed with a rear shroud 128 and a front shroud 130 and provides radial flow. It is desirable for the impeller 138 of this example to have some form of thrust bearing surfaces. The impeller body 140 has a central opening 144 that includes a rear well 146 that together with an overlying magnet protection sleeve 160, discussed below, provides first axial and radial thrust bearing surfaces, and a front well 148 that provides second axial and radial thrust bearing surfaces. The first well 146 receives a rear bushing 150 and the second well 148 receives a front bushing 152. Alternative or additional provision for rearward and/or forward thrust bearings also may be employed, and thrust bearings may be integrally or separately provided to retain appropriate positioning of components to reduce vibration and wear. In this second example, the impeller 138 is rotatably coupled to the canister 116 via the bushings 150, 152, that engage the thrust bearing surfaces provided by the rear and front wells 146, 148, and the impeller 138 rotates about a rotational axis R1. As noted above, alternative bushing configurations may be utilized and the bushings could be initially fixed to or otherwise engage the canister 116 or the impeller 138 during assembly of the pump 102.
To drive the impeller 138 in this second example pump 102, a permanent magnet coupling 154 is disposed within the central opening 144. The permanent magnet coupling 154 includes outer permanent magnets 156 connected to an outer magnet ring 158 that preferably is constructed of magnetic material and is disposed in the central opening 144 and connected to the impeller 138. Outer magnets 156 may be of any configuration, but are preferably rectangular and are preferably connected to the outer magnet ring 158 in a manner such as described with respect to the first example embodiment. The magnets 156 also may be protected from the pumped fluid by a thin magnet protection sleeve 160 that, similarly to the first example, provides protection in both the axial and radial directions. The outer magnets 156 are at least partially axially aligned with the pumping region of the impeller 138.
The permanent magnet coupling 154 further includes inner permanent magnets 162 connected to an inner magnet ring 164 that is in the configuration of a hub that is connected to a shaft 166 on the drive motor 112 by a key 168. The inner magnets 162 are in close proximity to, axially aligned with, but separated from the outer magnets 156 by the relatively thin-walled cylindrical portion 122 of the canister 116. When the shaft 166 of the drive motor 112 rotates, it causes the inner magnets 162 to rotate which, via a magnetic coupling with the outer magnets 156, causes the impeller 138 to rotate.
As seen in
As with the first example pump 2, in this second example 102, the close-coupled drive configuration 114 and connection of the inner magnet ring 164 to the shaft 166 of the drive motor 112 allows for a shorter, more space efficient and lighter weight, drive and pump installation. This is further enhanced by the relatively short magnet coupling 154 that is within the pumping region of the impeller 138, generally in a pumping plane that is perpendicular to the rotational axis R1 of the impeller 138.
Turning to a third example embodiment in
The casing 204 is connected to an adapter 210, which includes a lower flange 211 that facilitates mounting the pump 202 to a base plate (not shown). The adapter 210 also accommodates a long-coupled drive configuration 214 via a coupling shaft 213 that is rotatably connected to the adapter 120 by bearings 215. It will be appreciated that the bearings 215 may be constructed as roller or ball bearings, as a bushing or in any other suitable form. Also, the coupling shaft 213 may be connected to a drive source, such as a drive motor, and the connection may be facilitated, for instance, by a key 217, or other suitable coupling structure.
Disposed in sealing engagement between the adapter 210 and the casing 204 is a canister 216 having a peripheral radial flange 218 that extends from a rear inverted cup portion 219 and is sealed to the casing 204 by a first static seal 220. The static seal 220 may be constructed in a similar manner to that described above with respect to the first example embodiment.
The canister 216 further includes a cylindrical portion 222 that has a rear opening 224, and a front end portion 226. The end portion 226 has a central aperture 228. The peripheral radial flange 218, inverted cup portion 219, cylindrical portion 222 and end portion 226 of the canister 216 may be constructed of any of a variety of rigid materials, and in any suitable manner, such as described above with respect to the first example embodiment. The canister 216 also may be integrally fabricated from a single piece or may be fabricated, such as by welding together separately formed portions. Much like in the first example, in this pump 202, a nose cone 230 has a threaded bore 232 that receives a fastener 234, such as a bolt, that passes through the aperture 228 in the end portion 226 of the canister 216 to connect the nose cone 230 to the canister 216. The nose cone 230 also is sealed to the canister 216 by a second static seal 235 that may be of similar construction to the first static seal 220.
The casing 204, the canister 216 and the nose cone 230 define an interior pumping cavity 236 that is in communication with the inlet port 206 and outlet port 208. An impeller 238 is disposed within the interior pumping cavity 236 and includes an impeller body 240 and vanes 242 extending therefrom. The impeller 238 has a partially shrouded construction and provides mixed axial and radial flow. It is desirable for the impeller 238 to have some form of thrust bearing surfaces. The impeller body 240 has a central opening 244 that includes a rear well 246 that together with an overlying magnet protection sleeve 260, discussed below, provides first axial and radial thrust bearing surfaces, and a front well 248 that provides second axial and radial thrust bearing surfaces. The first well 246 receives a rear bushing 250 and the second well 248 receives a front bushing 252. As noted with the prior examples, additional provision for rearward and/or forward thrust bearings also may be employed, and thrust bearings may be integrally or separately provided to retain appropriate positioning of components to reduce vibration and wear. In this third example, the impeller 238 is rotatably coupled to the canister 216 via the bushings 250, 252, that engage the thrust bearing surfaces provided by the rear and front wells 246, 248, and the impeller 238 rotates about a rotational axis R2. As noted above, alternative bushing configurations may be utilized and the bushings could be initially fixed to or otherwise engage the canister 216 or the impeller 238 during assembly of the pump 202.
To drive the impeller 238 in this third example pump 202, a permanent magnet coupling 254 is disposed within the central opening 244. The permanent magnet coupling 254 includes outer permanent magnets 256 connected to an outer magnet ring 258 that preferably is constructed of magnetic material and is disposed in the central opening 244 and connected to the impeller 238. Outer magnets 256 may be of any configuration, but are preferably rectangular and are preferably connected to the outer magnet ring 258 in a manner such as described with respect to the first example embodiment. The magnets 256 also may be protected from the pumped fluid by a thin magnet protection sleeve 260 that similarly to the prior examples provides protection in both the axial and radial directions. The outer magnets 256 are at least partially axially aligned with the pumping region of the impeller 238.
The permanent magnet coupling 254 further includes inner permanent magnets 262 connected to an inner magnet ring 264 that is in the configuration of a hub that is connected to the coupling shaft 213 by a key 268. The inner magnets 262 are in close proximity to, axially aligned with, but separated from the outer magnets 256 by the relatively thin-walled cylindrical portion 222 of the canister 216. When the coupling shaft 213 is connected to a power source, such as a drive motor, and is rotatably driven, it causes the inner magnets 262 to rotate which, via a magnetic coupling with the outer magnets 256, causes the impeller 238 to rotate.
As seen in
Unlike the first and second example pumps 2, 102, in this third example pump 202, the long-coupled drive configuration using a coupling shaft 213, connection of the inner magnet ring 264 to the coupling shaft 213, and the inverted cup portion 219 still allow for a shorter length, more space efficient and lighter weight, drive and pump installation. This greater space efficiency is achieved by allowing for a longer magnet coupling 254 that may be provided for higher torque applications, while still locating at least a portion of the magnet coupling 254 and magnets 256, 262 within the pumping region of the impeller 238, generally in a pumping plane that is perpendicular to the rotational axis R2 of the impeller 238.
From the above disclosure, it will be apparent that pumps constructed in accordance with this disclosure may include a number of structural aspects that cause them to provide a magnet coupling inside an impeller that is disposed within a pumping plane, such that the magnet coupling is at least partially axially aligned with the pumping region of the impeller. The pumps may exhibit one or more of the above-referenced potential advantages, depending upon the specific design choices made in constructing the pump.
It will be appreciated that a rotodynamic pump with permanent magnet coupling inside the impeller in accordance with the present disclosure may be provided in various configurations. Any variety of suitable materials of construction, configurations, shapes and sizes for the components and methods of connecting the components may be utilized to meet the particular needs and requirements of an end user. It will be apparent to those skilled in the art that various modifications can be made in the design and construction of such pumps without departing from the scope or spirit of the claimed subject matter, and that the claims are not limited to the preferred embodiments illustrated herein. It also will be appreciated that the example embodiments are shown in simplified form, so as to focus on the pumping principles and to avoid including structures that are not necessary to the disclosure and that would over complicate the drawings.
Number | Name | Date | Kind |
---|---|---|---|
3107310 | Carriere et al. | Oct 1963 | A |
4184090 | Taiani et al. | Jan 1980 | A |
4645433 | Hauenstein | Feb 1987 | A |
4648808 | Hauenstein | Mar 1987 | A |
4793777 | Hauenstein | Dec 1988 | A |
4836147 | Morris | Jun 1989 | A |
5324177 | Golding et al. | Jun 1994 | A |
5370509 | Golding et al. | Dec 1994 | A |
5407331 | Atsumi | Apr 1995 | A |
5501582 | Gautier et al. | Mar 1996 | A |
6280156 | Wirz et al. | Aug 2001 | B1 |
7146822 | Stewart | Dec 2006 | B2 |
7707720 | Klein et al. | May 2010 | B2 |
20030072656 | Niwatsukino et al. | Apr 2003 | A1 |
20031007265 | Niwatsukino et al. | Apr 2003 | |
20030124007 | Schima et al. | Jul 2003 | A1 |
20030139643 | Smith et al. | Jul 2003 | A1 |
20040234395 | Hatano | Nov 2004 | A1 |
20040236420 | Yamane et al. | Nov 2004 | A1 |
20050012411 | Hoffman et al. | Jan 2005 | A1 |
20070280841 | LaRose et al. | Dec 2007 | A1 |
20100028176 | Platt | Feb 2010 | A1 |
20100280305 | Hidaka et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2009074434 | Apr 2009 | JP |
2009254436 | Nov 2009 | JP |
WO 2008000506 | Jan 2008 | WO |
WO 2008000506 | Jan 2008 | WO |
Entry |
---|
International Search Report for PCT/US2012/070932 dated Mar. 13, 2013. |
Written Opinion of the International Searching Authority for PCT/US2012/070932 dated Mar. 13, 2013. |
International Search Report for PCT/US2012/070923 dated Mar. 1, 2013. |
Written Opinion of the International Searching Authority for PCT/US/2012/070923 dated Mar. 1, 2013. |
International Search Report for PCT/US2012/070923 dated Mar. 13, 2013. |
Written Opinion of the International Searching Authority for PCT/US/2012/070923 dated Mar. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20130171011 A1 | Jul 2013 | US |