This application claims the benefit and priority of Chinese Patent of Invention Application No. 201310043366.2 filed Jan. 24, 2013. The entire disclosure of the above application is incorporated herein by reference.
The present invention relates to a rotor and a motor and compressor comprising the rotor.
A motor can convert electric energy into mechanical energy by using a copper coil, also known as stator winding, to produce a rotating magnetic field, which acting on a rotor, forms a rotary torque driven by magnetoelectricity. Motors are widely used in the industries, especially in compressors. However, motor loss has been one of the factors that affect the performance of a motor. Currently, motor loss mostly results from the rotor. When the rotor is running at a high speed, it will generate a large magnetic flux and easily cause a high magnet temperature and demagnetizes the magnet. This may degrade the overall performance of the compressor. Generally, prior art in this field relies on cooler oil flowing through several oil holes in the rotor to reduce the temperature of the rotor magnet to cool the magnet.
In one embodiment of the rotor, the rotor comprises, a rotor core defining an outer periphery, a bore concentric with a center of the rotor core, a plurality of magnet slots positioned on the outer periphery, and a plurality of oil holes located radially outward from the center between the bore and the magnet slots. Each of the oil holes includes a body portion and at least one projected portion, the projected portion located radially outward from the body portion and positioned between the body portion and the magnet slots.
In a cross section of the rotor taken orthogonally to its center axis, each body portion is bounded between an inner circle boundary, the inner circle boundary capable of being drawn on the cross section concentric with the rotor core and radially outward from the inner bore, and an outer circle boundary, the outer circle boundary capable of being drawn on the cross section concentric with the rotor core and located radially outward from the inner circle boundary and radially inward from the magnet slots. In another embodiment of the rotor, the projected portions extend from the body portion to the magnet slots, and, for each oil hole, the body portion, projected portion, and magnet slots forming an integral oil hole.
In another arrangement of the present disclosure, each oil hole of the rotor includes two projected portions, the two projected portions located on opposing ends of the body portion.
In some embodiments, when looking at the cross section of the rotor core taken orthogonally to the center axis: each magnet slot has a midpoint, each midpoint is located on a diameter which is capable of being drawn through the center of the cross section, each oil hole of the projected portion includes a pinnacle portion having a peak, the peak of the pinnacle located on the diameter and extending to the midpoint of the magnet slot.
In yet other embodiments, each oil hole of the rotor corresponds to a magnet slot. The rotor further comprises the magnet positioned in the said slot. The number of the oil holes in the rotor is equal to or a multiple of the number of magnets.
In another embodiment of this invention, the rotor core has oil holes including the projected portion to increase the area of contact between the cooler oil and the rotor core and facilitate the cooling of the rotor core. Furthermore, the projected portions of the oil holes extend to the magnet slot, so that cooler oil can flow into the magnet slot, enhance the cooling effect of the magnet in the slot, and thus increase the overall performance of the rotor.
Further, this invention discloses a motor comprising the said rotor. The motor located in a compressor. The compressor comprises a hollow shaft and an oil pump, with the shaft located in the bore of the rotor core. The oil pump transmits the oil to the top of the shaft, and the oil flows into the oil holes which are between the shaft and the magnet slots to cool the magnets.
Drawings and embodiments are combined below to describe the technical solution provided in the present invention. Generally, rotor cores are formed from a plurality of stacked laminations. Each lamination is die cut, using a predetermined pattern, and stacked on top of each other to form a cylindrically shaped rotor.
As shown in
Each of the oil holes 24 includes a body portion 241 and a projected portion 242 that extends from the body portion 241. The projected portion 242 is located radially outward from the body portion 241 and positioned between the body portion 241 and the magnet slots 23. Specifically, in a cross section of the rotor core 2 orthogonal to its center axis, the body portion 241 is bounded between an inner circle boundary 25 and an outer circle boundary 26. As shown in
Similar to the embodiment shown in
Similar to the embodiment shown in the
Further, in this embodiment, there is one oil hole 34 for each magnet slot 33 in the rotor core 3. The body portion 341 of the oil hole 34 has at least one projected portion located between the body portion 341 and the magnet slot 33.
Optionally, in another embodiment of rotor core 3, the number of oil holes in the rotor core can be a multiple of the number of magnet slots. The projected portion of each oil hole can extend from the projected body portion close to the magnet slot. Specifically, there are six oil holes in the rotor core shown in the drawing, but the number of oil holes is not limited to six, and can be any even number of groups.
The oil hole 44 comprises a body portion 441 and a projected portion 442 that extends radially outward from the body portion 441 and is positioned between the body portion 441 and the magnet slot 43. Specifically, in the cross section of the rotor core taken orthogonal to its central axis, the body portion 441 is located in the area between an inner circle boundary 45 and an outer circle boundary 46. The oil hole 44 has one projected portion 442.
The projected portion 442 extends from the body portion 441 to the magnet slot 43. Hence, the body portion 441, the projected portion 442 and the magnet slot 43 form an integrated hole. Driven by centrifugal force, the oil in the oil circulation system can flow through the body portion 441 into the magnet slot 43. Therefore, the oil in the magnet slot 43 can better cool the magnet and ideally protect the magnet from demagnetization.
Optionally, in other embodiments of rotor core 4, there can be a multiple number of the oil holes equal to the number of the magnet slots in the rotor core.
The motor 6 comprises the rotor chosen from any of said rotors above.
The motors disclosed in embodiments of this invention include but are not limited to brushless permanent magnet motors.
The compressor 7 comprises a hollow shaft 71, an oil pump, an oil sump that receives the oil 72 and the motor 6. The motor 6 has a stator 61 and a rotor 62, and the rotor 62 chosen from any of said rotor above.
Driven by the oil pump, the oil 72 is transmitted through the shaft 71 and flows to the surface of the rotor core. The oil 72 flows from the rotor core into the oil hole between the shaft and the magnet slot to cool the rotor core and the magnet.
The compressors disclosed in embodiments of this invention include but are not limited to a scroll compressor.
It should be noted that “include”, “comprise” or any other variant meant to non-exclusively contain a series of processes, methods, items or devices that comprise elements not explicitly listed in addition to those already covered or all elements inherent in such processes, methods, items or devices. Without further limitations, elements defined by “comprising a . . . ” do not exclude other similar elements besides the said elements contained in the processes, methods, items or devices covering.
The foregoing descriptions provide preferred embodiments of the invention and are not intended to limit the coverage of this invention. Any changes, modifications, equivalent replacements or improvements are made to the embodiments without departing from the spirit of the invention and are covered herein.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0043366 | Jan 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5889342 | Hasebe | Mar 1999 | A |
6450785 | Dellby | Sep 2002 | B1 |
7791236 | Liang | Sep 2010 | B2 |
20050140235 | Yamagishi | Jun 2005 | A1 |
20070052313 | Takahashi | Mar 2007 | A1 |
20090015081 | Takenaka | Jan 2009 | A1 |
20090045688 | Liang | Feb 2009 | A1 |
20100194220 | Tatematsu | Aug 2010 | A1 |
20120074805 | Takizawa | Mar 2012 | A1 |
20130020889 | Yamamoto | Jan 2013 | A1 |
20130038151 | Ohashi | Feb 2013 | A1 |
20130221772 | Miyamoto | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2007-104888 | Apr 2007 | JP |
2012-050331 | Mar 2012 | JP |
WO 2012101328 | Aug 2012 | WO |
Entry |
---|
English machine translation for JP 2007-104888. |
English machine translation for JP 2012-050331. |
English translation of JP 2011097725; Yuki et al.; May 2011; Japan. |
English translation of JP 2006067777; Ogawa et al.; Mar. 2006; Japan. |
English translation of Kaneko et al. JP 2002345188; Nov. 2002; Japan. |
English translation of Nakao Kiyoharu, JP 2007116807; May 2007; Japan. |
Number | Date | Country | |
---|---|---|---|
20140203674 A1 | Jul 2014 | US |