The present invention relates to a rotor and a rotary electric machine using the rotor.
In recent years, in a motor mounted on an automobile, for example, a stricter cooling requirement has come to be imposed on coils, as the output becomes higher. With regard to the cooling of coils, a technology according to PTL 1 has been known. PTL 1 discloses a cooling structure for an electric motor that includes a rotator core into which a rotation shaft is inserted, a stator core fixed to a casing, and end plates provided on respective ends of the rotator core, in which at least one core of the rotator core and the stator core is configured to have a magnetic pole that changes with a change in current; at least the other core of the two cores is configured to come to have a magnetic pole with a permanent magnet, and each of the end plates includes a refrigerant passage that is formed as a groove and provided between a wall surface of the end plate and an end surface of the rotator core in an axial direction, a supply hole through which a refrigerant is supplied and that is communicatively connected to the refrigerant passage, and a first outlet through which the refrigerant is discharged and that is communicatively connected to the refrigerant passage. In this cooling structure for an electric motor, the end plate is circumferentially provided with a discharge groove along an outer periphery of the refrigerant passage, and the discharge groove has a second outlet for discharging the refrigerant from the discharge groove, on the outer periphery side of the refrigerant passage.
In the cooling structure according to PTL 1, by communicatively connecting the refrigerant passage of the rotation shaft with the refrigerant passages of the end plates, the refrigerant is supplied from the rotation shaft to the coils of the stator, via the end plates. Therefore, it is necessary to align the rotation shaft and the end plates accurately at the time of assembling the motor, and there is also strict demands for machining accuracy and assembling accuracy of these components. Therefore, there has been a problem that a larger number of hours is required in manufacturing the motor, and leads to an increase in cost.
A rotor for a rotary electric machine according to the present invention includes: a rotor core; a shaft that is hollow and that supports the rotor; and an end plate that is disposed on an end of the rotor in a rotational axis direction, and that forms a passage through which a refrigerant flows, between the end plate and the rotor core, in which the end plate includes a plurality of ribs that come into contact with the shaft, the passage includes a refrigerant entry portion that is provided between the plurality of ribs, and a refrigerant exit portion that communicatively connects the refrigerant entry portion to an outer peripheral surface of the end plate, the shaft has a refrigerant supply hole communicatively connecting the refrigerant entry portion to internal of the shaft, and a circumferential length of the refrigerant entry portion along an innermost diameter is larger than a circumferential length of the refrigerant supply hole.
A rotary electric machine according to the present invention includes a rotor for a rotary electric machine, and a stator disposed outside the rotor with a predetermined gap therebetween.
According to the present invention, it is possible to provide a rotor and a rotary electric machine capable of reducing the cost while exerting high coil cooling performance.
An embodiment of the present invention will now be described with reference to some drawings.
The rotor 1 includes a rotor core 10, end plates 20, and the shaft 30. The rotor core 10 and the end plates 20 are mounted on the shaft 30, and are driven in rotation with the shaft 30. The rotor core 10 includes magnetic field generating elements such as permanent magnets or windings, not shown, and uses these magnetic field generating elements to generate a magnetic field around the rotor core. The end plates 20 are disposed adjacently to respective axial ends of the rotor core Through-holes are provided at radial centers of the rotor core 10 and the end plates 20, respectively, and the shaft 30 passes through the through-holes. In this manner, the rotor core 10 and the end plate 20 are mounted on the shaft 30.
The stator 2 is disposed outside the rotor 1 with a predetermined gap 5 therebetween, and includes a stator core 40 and a plurality of stator coils 50. In the stator core 40, a plurality of slots, not shown, extending in the axial direction are arranged side by side in the circumferential direction, and the stator 2 is formed by inserting one or a plurality of layers of the stator coil 50 into each of such slots. The stator coils 50 are connected to each other at coil ends that are provided on the respective ends of the stator core 40, and are connected to an inverter, not shown. The alternating current supplied from the inverter flows through the stator coils 50, so that a rotating magnetic field is generated in the stator 2. This rotating magnetic field generates a repulsive force and an attractive force with the magnetic field of the rotor 1, and causes the rotor 1 to be driven in rotation.
The shaft 30 has a hollow shape, and has insulating refrigerant (e.g., oil) flowing inside. In the rotor 1, each of the end plates 20 has a plurality of refrigerant exit portions 21 extending in radial directions. The refrigerant exit portions 21 are disposed communicatively with respective refrigerant supply holes 31 of the shaft 30, so that the refrigerant coming out of the shaft 30 via the refrigerant supply holes 31 is discharged near the stator 2. As a result, the refrigerant absorbs the heat of the stator coils 50 in the stator 2, and the stator coils 50 are cooled thereby.
The case 4 is disposed covering the outside of rotor 1 and the stator 2, and is in contact with the shaft 30, with bearings 6 interposed therebetween. In this manner, the internal space of the case 4 is sealed, to prevent the refrigerant from leaking outside of the case 4. The refrigerant coming out of the refrigerant supply holes 31 of the shaft 30 passes through the refrigerant exit portions 21 of the end plate 20, is discharged near the stator 2, absorbs the heat of the stator coils 50, and then is discharged through outlets, not shown, provided to the case 4.
The end plate 20 has a plurality of refrigerant entry portions 22, a plurality of ribs 23, and a plurality of holes 24, in addition to refrigerant exit portions 21 described above. On the inner wall of the through-hole of the end plate 20, the ribs 23 are provided at predetermined intervals in the circumferential direction. The ribs 23 are brought into contact with the shaft 30 (see
The refrigerant entry portions 22 are recessed parts provided on the inner wall of the through-hole of the end plate 20, between the rib 23 and the rib 23 that are adjacent to each other in the circumferential direction, the recessed parts being recessed outwards in the radial directions. To the outer periphery of each of the refrigerant entry portions 22, corresponding one of the refrigerant exit portions 21 is connected. Accordingly, the refrigerant entry portions 22 become communicatively connected with the outer peripheral surface of the end plate 20, via the respective refrigerant exit portions 21. Therefore, each of the refrigerant entry portions 22 and corresponding one of the refrigerant exit portions 21 can form a passage through which the refrigerant flows between the rotor core 10 and the end plate 20.
As shown in
The end plate 20 has an annular wall portion 25 positioned adjacently to the refrigerant entry portions 22 in the axial direction, in a manner connecting the plurality of ribs 23 on the surface that comes into contact with the shaft 30. In other words, the refrigerant entry portions 22 have one ends thereof in the axial direction positioned adjacently to the wall portion 25. The wall portion 25 extends across the entire circumference in the circumferential direction, along the inner wall of the through-hole of the end plate 20.
In the same manner as the ribs 23, the wall portion 25 comes into contact with the shaft 30 passing through the through-hole, and generates frictional force with the shaft 30. In other words, with the ribs 23 and the wall portion 25, the shaft is aligned with respect to the end plate 20, and the end plate 20 is supported on the shaft 30.
Assuming a configuration without any ribs 23, it is necessary to increase the axial length (length D5) of the wall portion 25 to align the end plate 20 with respect to the shaft stably. Such a configuration leads to an increase in the weight of the end plate 20.
In this embodiment, with the rib 23 and the wall portion the end plate 20 can be aligned with respect to the shaft stably. Therefore, compared with the configuration in which no rib 23 are provided and the end plate 20 is aligned only with the wall portion 25, the thickness (length D5) of the wall portion 25 can be reduced. Therefore, the weight of the end plate 20 can be reduced.
As shown in
The holes 24 pass through the end plate 20 in the axial direction, and are disposed in a manner surrounding the through-hole. On the end plate 20, the ribs 23 and the holes 24 are arranged in a predetermined positional relationship, as will be described below.
At this time, as shown in
The holes 24a to 24d and the ribs 23a to 23d have the positional relationship described above. In other words, the ribs 23a and 23b are disposed on the imaginary line 25a connecting the holes 24a and 24b and the center O of the through-hole of the end plate 20, and the ribs 23c and 23d are disposed on the imaginary line 25c connecting the holes 24c and 24d and the center O. With this configuration, when the operator fits the shaft 30 into the end plate 20 in the process of assembling the rotary electric machine 100, the operator can easily align the refrigerant supply holes 31 of the shaft 30 to the refrigerant entry portions 22 provided to the end plate 20, respectively, using the positions of the holes 24a to 24d as a reference. In other words, with the end plate 20 mounted on an axial end of the rotor core 10, the ribs 23 and the refrigerant entry portions 22 are positioned facing the rotor core 10. Therefore, the operator cannot visually check these positions. However, because the ribs 23a to 23d and the holes 24a to 24d are in the positional relationship described above, the operator can insert and fix the shaft 30 into the through-holes of the end plate 20 and the rotor core 10 in such a manner that the positions of the holes 24a to 24d and the refrigerant supply holes 31 do not match in the circumferential direction. In this manner, it is possible to prevent the ribs 23a to 23d from blocking the refrigerant supply holes 31, respectively, without the use of a special positioning jig, for example, and to connect the refrigerant supply holes 31 communicatively with the respective refrigerant entry portions 22, reliably.
As shown in
At this time, the positional relationship between the refrigerant entry portions 22 and the refrigerant supply holes 31 is as shown in
In the conventional structure as in PTL 1, because L1=L2, and in order to connect the refrigerant entry portions 22 communicatively to the respective refrigerant supply holes 31 in complete alignment, it is necessary to match their positions in the circumferential direction highly precisely. Therefore, very precise machining tolerance and assembly tolerance have been required for the end plate 20 and the shaft 30, and high-precision machining, e.g., cutting the refrigerant entry portion 22, and high-precision assembly using of a jig or the like has been needed. These requirements have led to a cost increase. By contrast, in the structure according to this embodiment, the relationship L1>L2 facilitates the alignment of the refrigerant entry portions 22 with respect to the respective refrigerant supply holes 31. As a result, the conventionally demanded machining tolerances and assembly tolerances of the end plates 20 and the shaft 30 are alleviated. Therefore, it is possible to reduce the number of hours required in manufacturing the rotary electric machine 100, and to achieve a cost reduction.
According to the embodiment of the present invention described above, the following actions and effects can be achieved.
Note that the embodiments and various modifications described above are merely examples, and the present invention is not limited to such examples, as long as the features of the invention are not impaired. For example, the numbers of the refrigerant exit portions 21, the refrigerant entry portions 22, the ribs 23, and the holes 24 in the end plate 20 are not limited to those described in the embodiment, and may be any number. Furthermore, although various embodiments and modifications have been described above, the present invention is not limited thereto. Other aspects conceivable within the scope of the technical idea of the present invention also fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2020-190581 | Nov 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/032018 | 8/31/2021 | WO |