This invention relates generally to an improved rotor and rotor housing for a pneumatic abrading or polishing tool, such as an orbital abrading or polishing tool, and more particularly to such a rotor having a wear-resistant core and a hardened rotor housing.
A known orbital abrading or polishing tool includes a motor having a rotor, which transmits a rotational force to a carrier part having an abrading or polishing head attached thereto. In this tool, a key extends from the carrier part and engages a keyway in the rotor, such that rotation of the rotor causes a corresponding rotation of the carrier part and the abrading or polishing head.
The rotors of such tools are typically made of steel or other suitable wear-resistant metals, although plastic or resinous materials have also been used. When a rotor is made of plastic or resinous materials, however, the keyway formed in the rotor wears easily. As such, the rotor must be replaced relatively frequently.
In addition, rotor housings of such tools are typically made of a homogeneous composition of steel or other wear-resistant material which can create substantial function when contacted by the vanes of a high speed rotor mounted therein.
Accordingly, a need exists for an improved rotor and rotor housing for an orbital abrading or polishing tool.
In one embodiment, the present invention is a power driven abrading or polishing tool that includes a motor having a rotor; a carrier part having a shaft and a key extending from the shaft; and an abrading or polishing head attached to the carrier part. The rotor includes an outer body composed of a first material, which may be a metal of relatively low wear resistance, such as aluminum, or a synthetic polymeric material such as that commonly referred to as “plastic,” and further includes a wear resistant core having a resistance to wear greater than that of the outer body. The core includes an inner passage with a keyway that receives the key on the shaft of the carrier part such that rotation of the rotor is transmitted to the carrier part and the head.
In another embodiment, the present invention is a power driven orbital abrading or polishing tool that includes a motor comprising a rotor; a carrier part having a shaft and a key extending from the shaft; and an abrading or polishing head attached to the carrier part. The rotor includes a core composed of a wear-resistant metallic material and having an inner passage with a keyway that receives the key on the shaft of the carrier part such that rotation of the rotor is transmitted to the carrier part and the head. The rotor also includes a generally cylindrically shaped outer body disposed in surrounding relation to the core and comprising material of relatively low wear resistance, such as aluminum or a synthetic polymeric material.
Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the features of the present invention.
As shown in
As shown in
As shown in
The pneumatic motor 13, which may be an air motor, has a sectionally formed stator or housing 35 (see
As shown in
The top wall 37 has a planar horizontal undersurface 49 forming the top of chamber 43 within which the rotor 42 is received. The top wall 37 has an outer edge surface 50 which is received closely adjacent the internal surface 23 of the part 22. At its upper side, the top wall 37 has an annular surface 51 which is engaged by the annular flange 25 of the body part 22 to clamp the top wall 37 downwardly against the side wall 36 of the motor. Radially inwardly of the surface 51, the top wall 37 has an annular portion 52 defining a cylindrical recess 53 within which the outer race of the ball bearing 38 is received and located. The externally cylindrical vertical shaft portion 44 of the carrier 14 is a close fit within the inner race of the bearing 38, and is retained against downward withdrawal from the bearing 38 by a washer 54 secured to the shaft 44 by a screw 55 connected into the upper end of the shaft. The washer projects radially outwardly far enough to engage the upper surface of the inner race of the bearing 38 to maintain the parts in assembled condition.
The bottom wall 39 of the motor housing or stator is similar to the top wall 37, but inverted with respect to the top wall. More particularly, the bottom wall 39 has an upper planar horizontal surface 56, a cylindrical outer edge surface 57 which fits fairly closely within the cylindrical surface 23 of the body part 22, and a horizontal annular undersurface 58 which is engaged annularly by the shoulder surface 31 of the retainer 29 to clamp the bottom wall 39 upwardly against the side wall 36 of the motor housing. Radially inwardly of the surface 58, the bottom wall 39 has a downwardly projecting annular portion 60 defining an essentially cylindrical recess 61 within which the bottom ball bearing assembly 40 is received and located. The inner race of the bearing 40 is a close fit about the externally cylindrical shaft portion 44 of the carrier 14, to coact with the upper bearing 38 in the mounting part 14 for its desired rotation about the axis 15.
As shown in
Externally, the rotor 42 has a vertical cylindrical surface 66 centered about the axis 15 and therefore eccentric with respect to the inner cylindrical surface 47 of the motor housing as seen in
In one embodiment, the inner surface 47 of the rotor housing 35 is made of a hard material selected to reduce friction between it and the vanes 67 of the rotor 42. Although the housing can be a homogeneous body having the desired hardness properties, in one embodiment the housing will be coated with a suitably hard material. In either case, the inner surface 47 may have a hardness of at least approximately 80 on the Rockwell scale and a microfinish of 14. Suitable materials for this purpose include titanium nitride (TiN), titanium aluminum chromium nitride (TiAlCrN), diamond-like carbon (DLC), tungsten carbide (WC) or other suitable materials of high hardness. Often, such materials will be metallic or metal-containing substances.
In cases where the housing body is coated to provide the desired characteristics of its inner surface 47, the coating may be formed by a thin film process such as physical vapor deposition (PVD), plasma-assisted chemical vapor deposition (PA-CVD) or other suitable thin film processes. PVD processes suitable for this purpose may include, by way of example but not limitation, sputtering, arc deposition and evaporation.
In one embodiment, the inner surface 47 of the rotor housing 35 is coated with TiN in a thin film PVD process in which an arc is run over a Ti target in the presence of a plasma containing nitrogen gas. This creates what can be termed micro-explosions of titanium in the target, causing titanium to enter the deposition atmosphere. The result is a thin film of TiN that may be on the order of one micrometer or more in thickness. The deposition process may proceed at a rate of approximately one micrometer per hour.
More specifically, the process of depositing TiN on the inner surface 47 may begin by evacuation of a deposition chamber containing the rotor housing and a “target” of titanium. The chamber is then heated and argon is introduced. A plasma is struck in the argon gas to etch the housing. Nitrogen gas is then introduced and an arc is passed over the titanium target to cause titanium to enter the plasma. Arcing can be accomplished with an electron beam. Under these conditions, a coating of TiN is formed on the housing at a rate determined, in part, by the temperature of the plasma and the housing itself. The coating has a hardness of approximately 80 on the Rockwell scale and may also have a microfinish of 14 or better.
As shown in
As shown in
Preferably, the core 122 of the rotor 42 is non-rotatably coupled to the outer body 120 of the rotor 42, such that when compressed air flows against the vanes 67 causing a rotation of the outer body 120 of the rotor 42 (described below), the core 122 correspondingly rotates, which in turn causes a rotation of the carrier part 14 via the interaction of the keyway 124 of the core 122 and the key 64 of the shaft 44 of the carrier part 14.
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the outside diameter (OD) of the rotor 42 is approximately 1.35 inches, the depth (D) of each radial slot 68 is approximately 0.415 inches, and the width (W) of each radial slot 68 is approximately 0.070 inches. As such, each radial slot 68 is formed to a depth that is approximately 30% of the outer diameter (OD) of the rotor 42.
As is also shown in
In one embodiment, as illustrated in
Viewing
Beneath the level of the lower bearing 40, the carrier part 14 has an enlarged portion 89′ which is typically externally cylindrical about the axis 15. The enlarged portion 89′ then contains a recess 90 centered about the second axis 17 which is parallel to but offset laterally from the axis 15. The orbitally driven part 16 has an upper reduced diameter portion 91 projecting upwardly into the recess 90 and is centered about the axis 17 and journaled by two bearings 92 and 93 for rotation about the axis 17 relative to the carrier 14, so that as the carrier turns the part 16 is given an orbital motion. A lower enlarged diameter flange portion 94 of the part 16 has an annular horizontal undersurface 95 disposed transversely of the axis 17. A threaded bore 96 extends upwardly into the part 16 and is centered about the vertical axis 17, for engagement with an externally threaded screw 97 which detachably secures the head 18 to the rest of the device. A counterweight plate 98 may be located vertically between the carrier 14 and the flange 94 of the part 16, and be secured rigidly to the part 14 by appropriate fasteners. It may be externally non-circular about the axis 15 to counterbalance the eccentrically mounted part 16, the head 18, and any other connected elements.
The head 18 may be rectangular in horizontal section, including an upper horizontally rectangular rigid flat metal backing plate 99 having a rectangular resiliently deformable cushion 100 at its underside, typically formed of foam rubber or the like. The rectangular sheet of sandpaper 19 extends along the undersurface of the cushion 100, and then extends upwardly at opposite ends of the head for retention of its ends by two clips 101. The screw 97 extends upwardly through an opening in the plate 99 to secure the head 19 to the orbitally moving part 16.
The lower end 102 of the flexible tubular boot 33 carries and is permanently attached to a plate 103 preferably formed of sheet metal which is essentially rigid. Plate 103 has a horizontal circular portion 104 extending parallel to the upper surface of plate 99, and at its periphery has an upwardly turned cylindrical side wall portion 105 fitting closely about and bonded annularly to the lower externally cylindrical portion 102 of rubber boot 33. The plate 103 has a central opening 106 through which the screw 96 extends upwardly, so that upon tightening of the screw the plate 103 is rigidly clamped between the plate 99 and the element 16, with the boot 33 then functioning to retain the head 18 against rotation relative to the upper portion of the tool.
In operating the tool, a user holds the tool by grasping the upper handle portion 26, and then pressing downwardly on a lever 107 to open valve 83 and admit compressed air to the motor chamber. The air drives rotor 42 rotatively, with that rotation being transmitted to the upper reduced diameter shaft portion 44 of carrier 14. The rotation of the lower enlarged portion of carrier 14 causes orbital movement of the head 18 and its carried sandpaper sheet 19, to abrade the work surface 12. Because the rotor 42 has the core 122 with protrusions 136, the rotor 42 is light but extremely durable. The use of a metallic core avoids wear at the keyway 124, and the protrusions 136 permanently lock the polymeric outer body 120 of the rotor 42 to the core 122 of the rotor 42. The disclosed rotor 42 is therefore able to operate in its intended manner indefinitely.
Although the drawings illustrate the invention as applied to a power driven orbital sander, it will be apparent that the novel aspects of the air motor arrangement of the invention may also be utilized in other types of portable power driven abrading or polishing tools.
The preceding description has been presented with reference to various embodiments of the invention. Persons skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principles, spirit and scope of this invention.
This Patent Application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/882,908, filed on Dec. 30, 2006 and entitled “IMPROVED ROTOR AND ROTOR HOUSING FOR A PNEUMATIC ABRADING OR POLISHING TOOL,” the entire content of which is hereby expressly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60882908 | Dec 2006 | US |