This invention relates to rotor assemblies of the type used in rotary machines, such as gas turbine engines, that have rotor blades. More particularly, this invention relates to structure for blocking the flow of gases between the root sections of adjacent rotor blades.
Axial flow gas turbine engines for industrial purposes and for propelling aircraft typically have a compression section, a combustion section and a turbine section disposed about an axis of rotation. An annular flow path for working medium gases extends axially through the sections of the engine. The gases are compressed in the compression section. Energy is added to the gases in the combustion section. The hot working medium gases are expanded through the turbine section.
In the turbine section, the rotor assembly has a rotor disk and rotor blades that extend outwardly from the rotor disk. The rotor blades extend across the flowpath for working medium gases. Each rotor blade has an airfoil which adapts the rotor assembly to interact with the working medium gases. The rotor blades receive work from gases through the airfoils and drive the rotor disk about the axis of rotation.
The rotor disk is adapted by a plurality of axially extending slots to receive the rotor blades. The rotor blades each have a root section which adapts the rotor blade to engage an associated slot in the rotor disk. Tolerance variations between the root section and the axially extending slot under operative conditions allow for a small amount of circumferential movement or “rocking” of the rotor blades in the slot during assembly and under operative conditions. In addition, assembly requirements, tolerance variations and the need to accommodate thermal growth of between the adjacent root sections requires leaving an opening or circumferential gap G between the adjacent root sections. The gap G is in flow communication with the working medium flowpath and provides a leak path for working medium gases to leave the flowpath and leak around the airfoils. This leakage reduces the efficiency of the engine.
In some stages of the rotor section, the rotor blades are cooled to reduce thermal stresses in the rotor blades and to keep the temperature of the rotor blades within acceptable limits. Reducing the stresses and ensuring the temperatures are not excessive provides the rotor blade with a satisfactory structural integrity and fatigue life.
Cooling air is typically flowed for this purpose at a higher pressure than the working medium gases to passages in the root section. The cooling air is then flowed from the root section through other sections of the rotor blade, such as the airfoil and platforms, and discharged into the working medium flow path to provide cooling to the rotor blades. In such cooled rotor blades, the gap G provides a leak path for the cooling air from the root section into the working medium flowpath which also reduces the efficiency of the turbine.
Accordingly, scientists and engineers working under the direction of Applicants' assignee have sought to develop effective sealing constructions for the root sections of rotor blades. One approach to a sealing construction is discussed below with reference to
According to the present invention, a rotor assembly having a pair of rotor blades separated by a circumferential gap G includes a deformable, resilient seal member formed of a high temperature material which is disposed between the root sections of adjacent rotor blades, which engages each of the rotor blades and which is resiliently compressed by the rotor blades such that the seal member extends across the circumferential gap G and exerts a sealing force against each of the rotor blades as the seal member circumferentially urges the first rotor blades away from each other.
According to one embodiment of the present invention, the rotor assembly further includes a second pair of rotor blades flanking the first pair of rotor blades and includes a second seal member between each flanking rotor blade and its adjacent rotor blade, the second seal members urging the first pair of rotor blades toward each other and against the first seal member while the sealing force of the first seal member acting against and through the first pair of rotor blades urges the second seal member against the second pair of rotor blades.
According to one embodiment of the present invention, a first rotor blade has a first circumferentially facing surface and the adjacent second rotor blade has a second circumferentially facing surface, the surfaces being spaced by the circumferential gap G, and at least one of the first rotor blades has a way for receiving the seal member, such as a seal channel, in which the seal member is disposed, and for trapping the seal member, the seal member having a circumferential width Wu in the uninstalled condition that is greater than the width Wi in the installed condition such that the seal member extends circumferentially past the first surface of the first rotor blade by a distance G′ prior to installation of the second rotor blade by a distance that is greater than the distance G.
The term “seal channel” refers to an opening having a channel-like form that provides a way for receiving the seal member. The seal channel may be bounded in part by sidewalls that are continuous or a sidewall that is formed of sidewall segments.
According to one detailed embodiment of the present invention, the rotor blade includes a root section having a rotor blade root for engaging a rotor disk, a neck extending radially outwardly toward the airfoil region wherein the seal channel extends in a generally radial direction in the neck of the rotor blade between two sidewalls which extend away from the first surface into the rotor blade and are inwardly convergent, such that the seal member in the installed condition engages each of the sidewalls and the surface of the adjacent rotor blade for blocking leakage of the working medium gases between the necks under operative conditions and for damping vibrations in the rotor blades.
A primary feature of the present invention is a seal member which is resiliently deformable in the installed condition. Another feature is the coefficient of thermal expansion of the seal member and the rotor blades which causes the sealing force to increase under operative conditions. Still another feature in one embodiment is the cross-sectional shape of the seal member which permits the seal member to resiliently engage adjacent surfaces on the root section of adjacent rotor blades. In one embodiment, the seal member has an annular wall and generally cylindrical in cross-sectional shape. In one particular embodiment, the seal member has a C-shaped cross-sectional shape and the spring properties of the C-shaped cross-sectional seal member permit the seal member to be compressed during installation. Another feature is a seal channel which is bounded in the rotor blade by a first sidewall, end walls, and a second sidewall at the ends of the first sidewall. In one particular embodiment, the second sidewall extends for the entire length of the first sidewall.
A primary advantage of the present invention is the efficiency of the rotary machine which results from blocking the flow of unwanted gases between the root section of adjacent rotor blades with a resilient seal member. Under operative conditions, the seal member remains in engagement with the adjacent rotor blades as the rotor blades rock or move outwardly in response to operative forces and thermal expansion. Another advantage is the coulomb damping of the rotor assembly from friction which results from the sealing force of the seal member pressing against adjacent rotor blades as the rotor blades move with respect to each other and the seal member under operative conditions. Still another advantage is the durability of the rotor assembly which results from decreasing vibrational stresses in the rotor blades by damping the vibration of the rotor blades. Still another advantage is the durability of the seal member which results from accommodating thermal expansion of the adjacent rotor blades without permanently deforming or being crushed by movement of the rotor blades under operative conditions.
The foregoing features and advantages of the present invention will become more apparent in light of the following detailed description of the invention and the accompanying drawings.
The rotor disk 14 includes a rim 22 having a plurality of axially oriented slots, as represented by the fir tree slots 24, which adapt the rotor disk to receive the array of rotor blades 16. Each rotor blade has a root section 26, a platform section 28 and an airfoil section 32. The airfoil section extends outwardly with respect to the root section into the working medium flow path 18.
The root section 26 has a rotor blade root 34 for engaging a corresponding slot 24 in the rotor disk 14. A neck 36 extends radially outwardly from the rotor blade root. The neck extends toward the airfoil section 32 from the rotor blade root 34 to the platform section 28. The neck has segments of a circumferentially extending seal land, as represented by the seal land segments 38, 42, 44. The seal land segments extend circumferentially and axially with respect to the axis of rotation Ar.
Each airfoil section 32 has a leading edge 46 and a trailing edge 48. A pressure sidewall 52 and a suction sidewall 54 extend from the leading edge to the trailing edge. The rotor blade is commonly described as having a pressure side 56 and a suction side 58 in referring to those portions of the rotor blade on the side nearest the pressure sidewall and nearest the suction sidewall. For purposes of description, each part of the rotor blade has a pressure side and a suction side. Similarly, the rotor assembly (and therefore each part of the rotor assembly) has an upstream end 62 and a downstream end 64. The upstream end and the downstream end of the rotor blade are also commonly referred to as the leading edge and trailing edge of the rotor blade.
Each rotor blade 16 at (that is, near) the upstream end 62 has a first surface 66 which extends in the neck 36 and which faces circumferentially and a second surface 68 which extends in the neck and which faces circumferentially. The first surface 66 of one of the rotor blades, such as the rotor blade 16a, is spaced from the associated second surface 68 on the adjacent rotor blade 16b leaving a circumferential gap G therebetween. Thus, the root section of each rotor blade is separated from the adjacent rotor blade by a gap G which varies under operative conditions.
As shown in
The array of rotor blades 16 of the rotor assembly 12 also includes the second pair of rotor blades 16c, 16e that flank the first pair of rotor blades 16a, 16b. A second seal member, as represented by the seal members 72bc, 72ae, is disposed between each flanking rotor blade 16c, 16e and its adjacent rotor blade 16b, 16a from the first pair of rotor blades. Thus, the second seal member 72ae is between the rotor blades 16a, 16e and the second seal member 72bc is between the rotor blades 16b, 16c. With this configuration, the second seal members 72bc, 72ae of the second or flanking pair of rotor blades urge the first pair of rotor blades 16a, 16b toward each other and against the first seal member 72ab. The sealing force from the first seal member 72ab acts against and through the rotor blades 16a, 16b to urge the second seal members 72bc, 72ae against the second pair of rotor blades 16c, 16e.
The downstream end 64 of the rotor blade 16b has structural elements that are similar to the upstream end 62. The same numerical reference indicia are used for those structural elements at the downstream end that are similar to structural elements at the upstream end. In addition, the reference indicia for these elements at the downstream end include the letter “d.” For example, the downstream end has a downstream first surface 66d which is similar to the first surface 66 at the upstream end. The resilient seal member 72ab is at the upstream end. The rotor blade has a seal member 72abd at the downstream end.
As shown in
As shown in
As shown in
As shown in
The seal member is formed of a high temperature material that is suitable for use at the high temperatures of the turbine section of a gas turbine engine and that is both deformable and resilient at such high temperatures. High temperatures are temperatures in excess of about one thousand degrees Fahrenheit (1000° F.) or about 600 degrees Celsius (600° C.). Such a material is referred to herein as a “high temperature material.” The material has strength and toughness, and is preferably corrosion resistant and oxidation resistant at such temperatures. Such materials are typically alloys and one particular family of alloys are nickel based super alloys such as the Inconel® family of materials provided by the Special Metals Corporation. One particular alloy known to be suitable is described as Aerospace Material Specification (AMS) 5599 material. An example of such material is Inconel® 625 material.
The solid seal pin 112 is disposed in the seal channel 74pa to help block the flow of unwanted gases, such as working medium gases or cooling air, through the gap G. The pins are also formed of a material that can withstand the elevated temperatures the pin encounters under operative conditions. The pins are sized considerably smaller than the seal channel in order to permit assembly of the rotor blades 16apa, 16bpa and pins 112, 112d to the rotor disk while accommodating tolerance variations in these parts.
Accordingly, the pin 112 only partially blocks the leak path for gases through the gap G. The pin cannot be made with the same lateral width Wu to improve sealing as has the resilient seal member 72 for many reasons. For example, with a solid seal pin nearly as large in lateral width as the resilient seal member 72, the variations in tolerances between adjacent parts would cause difficulty during assembly and might even prevent assembly. In addition, even with a smaller size pin than the seal member 72 forced into place, the rotor blades 16apa, 16bpa would likely bind during operation due to thermal expansion of the rotor blades and thermal expansion of the pins as heat is transferred from the hot working medium gases to these parts. As will be realized, a pin of the same size as the resilient seal member 72ab could not be assembled using parts that did not have tolerance variations.
The method of forming the rotor assembly is explained by referring to
As shown in
Each seal member 72ab, 72abd is held in place in the associated seal channel 74, 74d with an appropriate material prior to disposing the second rotor blade 16a in its installed position in the rotor disk 14. The material 114 is shown in
Prior to engagement with the adjacent rotor blade 16a, the silicone potting material 114 is disposed in the channel 74, 74d. The silicone material extends from the seal member to the first rotor blade 16b to hold the seal member in place. As assembly takes place, the silicone potting material accommodates movement of each seal member 72ab, 72abd and retains the seal member in place as the seal member is compressed and expands during assembly. For example, the silicone potting material maintains contact with the seal member as the adjacent second rotor blade 16a is slid into position prior to compressing the seal members. The potting material is easily displaced but continues to maintain contact as the first rotor blade 16b engages the seal members with the sidewalls 92, 92d and then aids the second rotor blades 16a in compressing the seal member.
As shown in
As shown in
As shown in
As discussed above and as shown in
During operation of the gas turbine engine 10, working medium gases are flowed along the annular flowpath 18 that extends through the rotor assembly 12. Heat from the hot working medium gases quickly vaporize the silicone potting material that is disposed in the seal channel 74 to retain the seal members 72 during assembly.
The hot, high pressurized gases exert forces on the rotor blades as the gases are flowed through the airfoil sections 32 of the rotor blades 16. The forces drive the rotor assembly about the axis of rotation Ar. The rotor blades are urged outwardly with respect to the rotor disk by rotation of the rotor disk and exert rotational forces against the disk. The rotational forces are opposed by forces acting through the surfaces of the rotor disk bounding the slots 24 that engage the rotor blades. Thus, the rotor disk restrains the rotor blades against further outward movement. The rotor blades rock slightly back and forth in the circumferential direction because of tolerances on the parts in combination with variations in forces exerted by the working medium gases and variations in the rotational forces acting on the rotor blades.
The seal members 72 press against the adjacent rotor blades 16 with a sealing force under operative and non-operative conditions of the rotary machine. For example, the seal members 72bc, 72ae of the second pair of flanking rotor blades 16c, 16e each exert a force that urges the first pair of rotor blades 16a, 16b toward each other and against the first seal member 72ab. Likewise the sealing force of the first seal member 72ab acts against and through the first pair of rotor blades 16a, 16b to urge the second seal members 72bc, 72ae against the second pair of rotor blades 16c, 16e. These forces result in a frictional force opposing movement of the rotor blades as the components move in sliding engagement with respect to each other as a result of vibrations and rocking of the rotor blades under operative conditions. The frictional forces provide coulomb damping of vibrations in the rotor disk and the rotor blades. The durability of the rotor assembly is enhanced because damping vibrations decreases vibrational stresses in the rotor blades and rotor disk.
The resilient seal members 72 exert sealing forces at the root sections 26 of adjacent rotor blades 16 and extend to block the flow of unwanted gases between the adjacent rotor blades. This increases the level of the efficiency of the rotary machine 10 as compared to machines which do not block the flow of these gases to the extent of the present invention. Under operative conditions, the seal members remain in engagement with the adjacent rotor blades by reason of being compressed. The level of compression is great enough so that this occurs even as the rotor blades rock back and forth or as the rotor blades move outwardly in response to operative forces or change in dimension as a result of thermal expansion.
Thermal expansion of the rotor blades 16 and the seal members 72 also increases the sealing forces which further aids in damping and blocking the flow of unwanted gases between the root sections 26 of the rotor blades. As noted above, the gases might be working medium gases for constructions in which the cavity 70 between the rotor blades is not pressurized with cooling air; or, the gases might be cooling air lost to the working medium flow path by flowing away from the cavity in constructions using the cavity as a supply region for cooling air.
The seal member has a satisfactory level of durability which results from the design of the seal member employing high temperature material that allows the seal member to accommodate thermal expansion of the adjacent rotor blades without permanently deforming or being crushed by movement of the rotor blades under operative conditions. In addition, the seal members provide satisfactory sealing forces under operative conditions while resiliently deflecting to accommodate installation of the rotor blades in the rotor disk.
Although the invention has been shown and described with respect to detailed embodiments thereof, it should be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
2912223 | Hull, Jr. | Nov 1959 | A |
3834831 | Mitchell | Sep 1974 | A |
5253810 | Maltby et al. | Oct 1993 | A |
5524846 | Shine et al. | Jun 1996 | A |
7090466 | Honkomp et al. | Aug 2006 | B2 |
20040062652 | Grant et al. | Apr 2004 | A1 |
20060110255 | Itzel et al. | May 2006 | A1 |
20060177312 | Tomita et al. | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070269315 A1 | Nov 2007 | US |