This application is based upon and claims priority to, under relevant sections of 35 U.S.C. ยง 119, German Patent Application No. 10 2018 122 394.3, filed Sep. 13, 2018, the entire contents of which are hereby incorporated by reference.
The invention relates to a rotor for a rotary press for pressing a product into pellets comprising a die plate with die holes that is rotationally driven by means of a rotary drive, an upper punch seat that rotates in sync with the die plate to axially guide upper punches, as well as a lower punch seat that rotates in sync with the die plate to axially guide lower punches.
Such a rotor is for example known from DE 10 2015 105 936 B4. In rotary presses, generally a powdered product is pressed into pellets such as tablets. During the pressing process, process residue (e.g., dust or powder) arises that in particular collects on the top side of the die plate and the top side of the lower punch seat. Suction lines of suction apparatuses that suck up the product residue are positioned at several positions of the rotor, in particular several positions of the die plate and the lower punch seat. The entire pressing chamber can become contaminated by the product residue. The cleaning effort is correspondingly high, and dirt-sensitive, or respectively dust-sensitive components must be protected in particular, for example by individual covers. In order to minimize product dust from spreading, high vacuum performance is required. On the one hand, this impairs efficiency and can on the other hand lead to undesirable product loss in the region of the die plate. In particular in the region of the suction units, the product residue is also stirred up and can be distributed undesirably in the pressing chamber.
Based on the explained prior art, the object of the invention is to provide a rotor of the aforementioned type with which, in a structurally simple manner, reliable product residue removal is possible with a minimized danger of contaminating the pressing chamber.
For a rotor of the aforementioned type, the invention solves the object in that a fixed, annular discharge channel is provided that, during the operation of the rotor, collects product residue from the die plate and/or from the lower punch seat, the discharge channel has a removal region from which the product is removed, and a catch element is provided which rotates in sync with the die plate, is guided in the discharge channel, and conveys the product located in the discharge channel to the removal region.
The rotor according to the invention is used in a rotary press in which a generally powdered product is pressed into pellets, for example into tablets. By means of a rotary drive, a die plate with die holes is rotatably driven. An upper punch seat for axially guiding upper punches and a lower punch seat for axially guiding lower punches rotate in sync with the die plate. The rotor according to the invention can also comprise upper punches and lower punches that rotate in sync with the die plate and are assigned to the die holes in pairs. The lower punch seat comprises a plurality of holes in which the lower punches are accommodated.
Correspondingly, the upper punch seat comprises a plurality of holes in which the upper punches are accommodated. The upper and lower punches interact in the holes in the die plate to press the product. The lower punch seat can comprise an annular top side. The upper punch seat can comprise an annular bottom side. The top side of the lower punch seat can lie in a preferably horizontal plane. The bottom side of the upper punch seat can also lie in a preferably horizontal plane. The top side of the punch seats and the bottom side of the upper punch seat can lie in planes that are parallel with each other. The die plate also generally comprises a top side lying in a preferably horizontal plane and a bottom side that generally lies parallel to the top side and accordingly also lies in a preferably horizontal plane. The top side of the lower punch seat, the bottom side of the upper punch seat, and the top and bottom side of the die plate can in particular lie in planes that are parallel to each other. Moreover, the rotor can comprise a top control cam that controls the axial movement of the upper punch running across the upper control cam, as well as a bottom control cam that controls the axial movement of the lower punch running across the bottom control cam. The rotor also has a drive for rotating the die plate with the upper punch seat and the lower punch seat. The upper and lower punches interact in a known manner in the holes in the die plate to press the product into pellets. The die plate can be a closed ring disk or be formed from ring segments. The die holes can be formed by die sleeves that are releasably inserted into the die plate, or by holes that are directly introduced into the die plate.
The invention also relates to a rotary press, in particular a rotary tablet press, with a rotor according to the invention. The rotary press then furthermore comprises at least one filling apparatus in which the product to be pressed is filled into the holes in the die plate. The filling apparatus can for example have a so-called filling shoe by means of which the product falls into the holes under gravity. In addition, the rotary press comprises at least one pressing apparatus, that for example can comprise upper and lower compression rollers, in which the punches are pressed toward each other in the holes in the die plate to press the product. After passing through the pressing apparatus, the upper punches, guided by the top control cam, are retracted out of the holes, and the lower punches, guided by the lower control cam, are moved upward to eject the pellets produced in the holes. In a downstream scraping apparatus of the rotary press, the tablets can be scraped off of the top side of the die plate toward one or more discharge channels by means of which the pellets are removed from the rotary press.
According to the invention, an annular, fixed discharge channel is provided. Unpressed product that for example can be powder or dust is located in particular on the top side of the die plate and on the top side of the lower punch seat. From there, the product preferably passes at least mainly, in particular almost entirely into the discharge channel under centrifugal force and gravity. In particular due to the rotation of the rotor, the product is conveyed away radially under centrifugal force to the outside of the top side of the die plate, or respectively the lower punch seat, and then falls under gravity into the discharge channel. The discharge channel has a removal region from which the product is removed in particular through a removal opening in the removal region. According to the invention, a catch element is also provided that rotates with the die plate and is arranged in the discharge channel and is guided therein during rotation. The catch element entrains product located in the discharge channel and conveys it to the removal region from where it is removed, for example out of the pressing chamber of the rotary press into a scrap or recycling container. The catch element rotates together with the rotor, in particular with the die plate and the upper and lower punch seat in the fixed, i.e., non-rotating discharge channel. In this case, the catch element can scrape the product like a scraper off the floor of the discharge channel and convey it to the removal region. In this case, the catch element rotates through the removal region. A thermoplastic for example such as polyoxymethylene (POM) can be the material for the catch element.
According to the invention, the product is accordingly discharged partially mechanically to the removal region from where it is then removed. Since the product is fed to the discharge channel in particular under centrifugal force and gravity on the one hand, and the product is conveyed mechanically on the other hand in the discharge channel to the removal region, it is unnecessary, in contrast to the prior art, to provide greater vacuum output close to the die plate or the lower punch seat, in particular at several points. Instead, a single removal region is sufficient from which the product which is mechanically delivered thereto is removed. Regions that can be contaminated in the pressing chamber from excess product, in particular from product dust, are thereby minimized. Instead, there is a definite airflow specifically in the region of the removal region. Additional coverings of dirt-sensitive components that are necessary in the prior art are not required, and the surfaces to be cleaned and hence the cleaning effort are reduced. Efficiency is increased on the one hand since there is less required vacuum performance. On the other hand, there is no swirling of excess product which may occur in the prior art, or there is no undesirable suction and hence product loss in the region of the die plate.
According to an embodiment, the removal region can be a suction region, wherein a suction apparatus is provided that sucks product out of the suction region. The suction apparatus can reinforce or assist the delivery of the product to the discharge channel. In particular, the suction apparatus can generate a vacuum that extends into the region of the discharge channel, which supports the delivery of the product residue into the discharge channel. This is, however, not essential. As explained, it is in particular possible for the product to be delivered to the discharge channel exclusively under centrifugal force and gravity. The catch element in this case rotates through the suction region; given the suction effect of the suction apparatus, the product entrained by the catch element is sucked out of the suction region in this case.
Of course, the discharge channel according to the invention can also have several removal regions, in particular suction regions. These can then each be connected to a suction apparatus. It is, however, also possible to provide a suction apparatus for several suction regions. Of course, several catch elements can also be provided.
According to one embodiment, at least the floor of the discharge channel can be arranged in a plane below the top side of the lower punch seat. In particular, the entire discharge channel can be arranged in a region below the top side of the lower punch seat. The discharge channel, or respectively its floor is thus also located below the die plate which is arranged above the top side of the lower punch seat. In this embodiment, the product falls very easily and directly into the annular peripheral discharge channel. The discharge channel can for example be arranged on the outer edge of the die plate, or respectively the lower punch seat. It can be located below the lower punch seat and in a region that is completely radially to the outside of the die plate, or respectively the lower punch seat, or partially overlaps with the die plate and/or the lower punch seat in a radial direction.
According to a particularly practical embodiment, the discharge channel can be a discharge groove. The discharge groove can for example comprise a U-shaped cross-section.
According to another embodiment, the catch element can be elastic. It can then for example adjoin the floor and/or walls of the discharge channel with slight elastic deformation and thus entrain the product in a particularly reliable manner.
According to another embodiment, the maximum width of the catch element can substantially correspond to the width of the discharge channel According to another embodiment, a bottom side of the catch element can adjoin the floor of the discharge channel, in particular during rotation. The shape of the catch element can be adapted to the cross-section of the discharge channel in order to further optimize the entraining effect. In particular, the catch element can adjoin the floor and the walls of the discharge channel as already explained.
According to another embodiment, the catch element can be fastened to the lower punch seat. The concomitant rotation of the catch element is thus realized in a manner that is particularly easy to construct.
A covering can moreover be provided that at least encloses, in particular encloses annularly, the die plate, the lower punch seat and the discharge channel. The covering can in particular tightly seal the die plate, the lower punch seat and the discharge channel against the exit of powder or dust. By means of such a covering arranged at a gap, preferably a short gap from the enclosed components, spreading of product residue in the pressing chamber is very reliably prevented.
According to an embodiment, the suction apparatus may comprise a vacuum apparatus. According to another embodiment, the vacuum apparatus can be provided that generates a vacuum relative to the surroundings of the covering within the region enclosed by the covering. Such a vacuum prevents the exit of product residue, in particular product residue dust.
An exemplary embodiment of the invention is explained below in greater detail with reference to figures. Schematically:
The same reference numbers refer to the same objects in the figures unless indicated otherwise.
The rotor according to the invention depicted in the
Moreover, a lower punch seat 18 with a plurality of through-holes 20 and an upper punch seat 22, also with a plurality of through-holes 24, is connected to the drive section 10. While the rotor is operating, lower punches are guided axially in the through-holes 20 of the lower punch seat 18, and upper punches are guided axially in the through-holes 24 of the upper punch seat 22. By means of upper and lower control cams of the rotary press, the axial movement of the upper and lower punches is controlled in a manner known per se such that they interact to press the product in the die holes, also in a manner known per se. The rotary drive rotates the die plate 12, the lower punch seat 18, and the upper punch seat 22 in sync during operation.
At reference signs 26 and 28, a covering of the rotor is discernible in
In
While the rotor is operating, the in particular powdered product is pressed into pellets in the die holes as explained. In so doing, product residue (e.g., dust or powder) inevitably accumulates on the top side of the die plate 12 and on the top side of the lower punch seat 18. Due to the rotation of the die plate 12 and the lower punch seat 18, this product residue first passes radially to the outside due to centrifugal force and then falls downward into the discharge channel 30 under gravity through the explained gap between the outer edges of the die plate 12 and lower punch seat 18 and the covering 26, 28. The movement of the product residue is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2018 122 394.3 | Sep 2018 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3332367 | Sperry | Jul 1967 | A |
8025498 | Haase | Sep 2011 | B2 |
9561634 | Kolbe | Feb 2017 | B2 |
20080029915 | Waldron | Feb 2008 | A1 |
20140314895 | Kolbe | Oct 2014 | A1 |
20160271067 | Marius | Sep 2016 | A1 |
20160303816 | Luedemann | Oct 2016 | A1 |
20180178474 | Vogeleer | Jun 2018 | A1 |
20190193309 | Kitamura | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
101612810 | Dec 2009 | CN |
101612815 | Dec 2009 | CN |
205110328 | Mar 2016 | CN |
2435777 | Feb 1976 | DE |
102007060335 | Jun 2009 | DE |
102015105936 | Jul 2017 | DE |
S63-299893 | Dec 1988 | JP |
2488489 | Jul 2013 | RU |
9925545 | May 1999 | WO |
Entry |
---|
EP 19190057.0; European Search Report; dated Nov. 18, 2019 (8 Pages). |
Number | Date | Country | |
---|---|---|---|
20200086598 A1 | Mar 2020 | US |