Rotor for an axial flow pump for conveying a fluid

Information

  • Patent Grant
  • 9028216
  • Patent Number
    9,028,216
  • Date Filed
    Wednesday, September 22, 2010
    14 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
Abstract
The invention relates to a rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade which has at least one part surface which extends transversely to the axis of rotation and beyond it, wherein the impeller blade has throughgoing webs or a network of webs which connect a different marginal regions of the impeller blades to one another. A good compressibility is hereby achieved in the radial direction with high stability during operation.
Description
BACKGROUND OF THE INVENTION

The invention is in the field of mechanical engineering, in particular fine mechanics, and can be used particularly profitably in the medical field.


The invention more specifically relates to a rotor for an axial flow pump.


In particular in medical engineering, pumps are required in small construction shapes, so-called micropumps, for a variety of applications. They are used for microinvasive applications, for example for conveying the body's own fluids in the body's own cavities or vessels. Such pumps are typically connected in microconstruction to catheters and are introduced, for example, through the body's own vessels and are brought to the site of use. A specific example for the use of such pumps is represented by so-called heart pumps which can be introduced into the body through a large blood vessel and which can assist or even replace the blood conveying of the heart.


Rotary pumps have specifically become known in this connection which are made as axial flow pumps.


A specific property of some pumps of this type is, in addition to their small construction shape per se, furthermore the radial compressibility so that such a pump can be compressed for transport through a blood vessel and can be expanded after the conveying to the site of use, for example in a heart chamber.


A pump of this type has become known, for example, from the US laying-open publications US 2009/0060743 A1 and US 2008/0114339 A1. The axial flow pumps described in these documents each have a shaft and a row of impeller blades flexibly attached thereto which convey a fluid in an axial direction on a rotation of the shaft. The impeller blades can be radially applied to the shaft so that the rotor is compressible in this manner. In operation, the individual impeller blades become erect, inter alia due to the fluid counterpressure, so that the pump has a considerable conveying capacity.


BRIEF SUMMARY OF THE INVENTION

It is the underlying object of the invention against the background of the prior art to provide a rotor for an axial flow pump which can be built as simply as possible and which can be manufactured inexpensively. It should moreover be low in mass and allow a sufficient conveying capacity.


The rotor in accordance with the invention has an impeller blade having at least one part surface which extends transversely to and beyond the axis of rotation, with the impeller blade having webs which each connect, individually or as a network, different marginal regions of the impeller blade to one another.


In accordance with the invention, a rotor is understood as a “compressible rotor” in the sense of the claims which is radially compressible. This preferably means that the rotor can adopt a compressed state (e.g. on the introduction into a human body or animal's body) as well as an expandable state (in pump operation, preferably in the body, e.g. in a left heart ventricle). In this respect, in the expanded state, the largest radial dimension of the rotor (that is e.g. the outer diameter of the rotor) is preferably at least 10%, particularly preferably at least 25%, larger than in a compressed state (the percentage figures relate to the dimension in the expanded state). The changing from the compressed state into the expanded state (and back) is preferably possible in a reversible manner as desired, i.e. without rotor damage.


This can mean, for example, that at least one part surface of the impeller blade is designed such that elements of the part surface are disposed opposite one another with respect to the axis of rotation at the same axial position on different sides of the axis of rotation. This can be realized, for example, such that the axis of rotation passes through the part surface and is radially surrounded at a plurality of sides by elements of the part surface.


This example can also be described such that the part surface can inscribe a circle which the axis of rotation passes through centrally.


In this respect, the impeller blade has throughgoing webs or a network of webs which connect further webs which each form a marginal section of the impeller blade at least regionally, in different marginal regions of the impeller blade, which can also be called marginal sections, and thus span the impeller blade. Webs of this type are suitable, in particular together with optionally provided marginal strips of the impeller blade, to span said impeller blade and to allow a fastening of a film which forms the conveying surface of the impeller blade and is supported by the webs. A very light construction of the impeller blade is thus implemented which nevertheless allows the creation of a large conveying surface.


The webs and the further webs can advantageously be made in one piece from a common base body. They can respectively have the same or different cross-sections.


The impeller blade is advantageously designed as neckless and is implemented in a self-supporting manner.


This means that the torque along the rotor is transferred by means of the impeller blade surface, that is, of the flat, curved body which essentially forms the impeller blade. Since the neck usually provided for transferring the torque and for holding the impeller blade surface has a substantial volume which can be saved by the design in accordance with the invention, a substantially greater compressibility of the rotor can be achieved in accordance with the invention.


At least one of the webs can connect two marginal regions of the impeller blade which are disposed opposite one another radially with respect to the axis of rotation.


Provision can, however, also be made that at least one web connects two marginal regions of the impeller blade which are disposed opposite one another in the longitudinal direction of the axis of rotation.


The total surface of the impeller blade can in any case be divided by webs in accordance with a desired pattern to crate the desired impeller blade surface which is formed either by the webs itself or by a film spanned over the webs. The webs, just like the conveying surface of the impeller blade, do not have to extend in a plane, but can rather describe a three-dimensional surface, for example extending as a screw helix. In this respect, the webs can extend contact-free next to one another or also be connected to one another spot-wise at intersections of the impeller blade, for example at such spots which are exposed to a special mechanical stress.


Such intersections can, however, also be selected such that a folding of the webs on a compression movement or an expansion movement of the impeller blade is made possible or facilitated by them.


At least some of the intersections, in particular all the intersections, can be spaced apart from the axis of rotation of the impeller blade. At least some webs, in particular all of the webs, can be spaced apart from the axis of rotation over their total length.


To design the webs as correspondingly compressible or expandable, they can advantageously be designed in meandering form. The meandering structure is advantageously applied in the surface of the impeller blade.


To create a corresponding mechanism for the compression and expansion of the impeller blade, provision can advantageously be made that the webs comprise a shape memory alloy, for example nitinol. In this case, a respective desired design of the impeller blade can be aimed for by temperature change. The mechanism of compression can here also be supported by utilization of the hyperelastic properties of the material nitinol.


If marginal sections of the impeller blade are made as marginal strips or marginal webs, they can additionally stabilize the impeller blade and can form a reliable hold or a support for a corresponding impeller blade film together with the webs. A film of this type can then be fastened to the webs and to the marginal strips or parts of the marginal strips, for example, by adhesive bonding.


The impeller blade can be arranged in full within a hollow-cylindrical component and can be connected to it in marginal regions. The hollow cylinder can be connected to one or two rotatably journalled drive journals in the region of the axial end regions of the impeller blade. The impeller blade is advantageously radially compressible together with the hollow-cylindrical component.


The invention also relates to a rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade which is designed neckless as a body which is flat with respect to its contour and which is rotated spirally about an axis.


This type of construction allows a particularly simple manufacture and can be compressed particularly simply and to a particularly small dimension, in particular in that no neck is required. This is decisive for the introduction of the rotor for medical applications via the bloodstream in the body of a human.


The impeller blade is advantageously made as a lattice or as a network of webs from a planar metal sheet.


This allows an inexpensive mass production with conventional methods of sheet metal working.


Provision can specifically advantageously be made that the impeller blade is in particular manufactured from a nitinol metal sheet, by cutting out of the webs, in particular by water cutting, laser cutting or electric erosion.


The webs can in this respect be made in meandering form in the sheet metal plane and/or perpendicular thereto. An easy bendability thereby results in the compression of the rotor in the radial direction.


Furthermore, the webs can have a different area moment of inertia in the sheet metal plane than perpendicular thereto.


A substantially smaller resistance can thereby be realized with respect to a radial compression of the impeller blade than with respect to loads which act on the impeller blade by the pumping operation. Loads which arise by a fluid pressure against the impeller blade plane are thus taken up in a very much stiffer manner.


A particularly simple embodiment of an impeller blade in accordance with the invention provides that said impeller blade is made as an elongate body, in particular a rectangular body, which is rotated spirally about an axis, in particular its central longitudinal axis. In this respect, the spiral form can also be designed in an irregular manner with respect to the pitch or, optionally, also otherwise distorted.


The rotation axis of the body preferably lies substantially parallel to the axis of rotation or corresponds to it on the assembly of the rotor.


A symmetrical helical design, or a spiral design asymmetrical to a limited extent, of an impeller blade thus results, for example, in that the ends of a planar rectangle area rotated against one another by 180 degrees or by a different angular amount about the longitudinal axis. The impeller blade surface is then made as a single, contiguous surface which extends beyond the axis of rotation and is passed through by it. The surface can in this respect also have cut-outs, for example in the region of the axis of rotation.


Such an impeller blade can be made self-supporting on a correspondingly stable design of the webs and rims so that the torque can, for example, be transferred via the impeller blade alone and no neck is required. The stiffness of the impeller blade itself is sufficient for the conveying of the fluid when it is driven from one of its ends. The torque is then introduced via the end-face rim of the impeller blade.


Provision can, however, also advantageously be made that the impeller blade is connected to a hollow cylindrical component surrounding said impeller blade. Such a hollow cylindrical component can be provided, for example, as a ring or as a tube section which additionally stabilizes the impeller blade and can be manufactured in one piece with it. A plurality of rings spaced apart coaxially and axially can, however, also be connected to the impeller blade at the periphery of the rotor.


These rings can then be spaced apart from one another axially by webs and can be made as radially compressible to be able to be compressed together with the impeller blade for the purpose of introduction into a body.


The present invention allows the simplest manufacture of an impeller blade for an axial flow pump in which the rims and reinforcement webs of the impeller blade can be manufactured, for example, in one piece by injection molding or machining of a metal sheet and can be provided with a film. Sections correspondingly axially adjoining the impeller blade can also be manufactured in one piece with the impeller blade to allow a rotatable journalling axially subsequent to the impeller blade and the introduction of a torque.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be shown and subsequently described in the following with reference to an embodiment in a drawing. There are shown



FIG. 1 an overview in section across an intracardiac catheter having an axial flow pump introduced into a heart chamber;



FIG. 2 an impeller blade of an axial flow pump in a three-dimensional view;



FIG. 3 the impeller blade of FIG. 2, with invisible contours being drawn in;



FIG. 4 the impeller blade of FIG. 2 with an emphasis of the visible surface by hatching;



FIG. 5 a side view of the impeller blade of FIG. 2;



FIG. 6 a section of the view of FIG. 5;



FIG. 7 an embodiment of a rotor of an axial flow pump in a three-dimensional view;



FIG. 8 the view of FIG. 7 with invisible contours drawn in; and



FIG. 9 a partly broken away view of the arrangement of FIG. 7;



FIG. 10 a further rotor in which the fastening of a drive shaft is solved differently than in the embodiment in accordance with FIG. 7;



FIG. 11 a rotor with two shaft roots fastened at both sides;



FIG. 12 a side view of a rotor with meandering-shape or wavy webs which span the impeller blade;



FIG. 13 the impeller blade of FIG. 12 in a view rotated by 90 degrees;



FIG. 14 the impeller blade of FIG. 12 in a three-dimensional view;



FIG. 15 the impeller blade of FIG. 12 in an axial plan view;



FIG. 16 another variant of an impeller blade with webs extending substantially in the direction of the axis of rotation in a side view;



FIG. 17 the arrangement of FIG. 16 in a side view rotated by 90 degrees;



FIG. 18 the arrangement of FIG. 16 in a three-dimensional view;



FIG. 19 the arrangement of FIG. 16 in an axial plan view;



FIG. 20 a further embodiment of a rotor with webs extending straight transversely to the axis of rotation in a side view;



FIG. 21 the arrangement of FIG. 20 in a side view rotated by 90 degrees;



FIG. 22 the arrangement of FIG. 20 in a three-dimensional view;



FIG. 23 the arrangement of FIG. 20 in an axial plan view;



FIG. 24 a further embodiment of a rotor with curved webs extending transversely to the axis of rotation in a side view;



FIG. 25 the embodiment of FIG. 24 in a side view rotated by 90 degrees;



FIG. 26 the embodiment in accordance with FIG. 24 in a three-dimensional view; and



FIG. 27 a plan view of the arrangement in accordance with FIG. 24 in an axial direction.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 schematically shows a blood vessel 1 in a human body which ends in a heart chamber 2 and into which a hollow catheter 3 is introduced.


A drivable shaft 4 runs through the hollow catheter 3 and can be driven at high speed by a motor 5 arranged outside the body. The hollow catheter 3 can be filled with a biocompatible fluid which can serve, on the one hand, the reduction in the friction of the shaft and, on the other hand, the dissipation of heat.


A heart pump 6 is arranged at the end of the hollow catheter 3 which sucks in blood through first openings 7 within the heart chamber 2 and emits it again via second openings 8 within the blood vessel 1. The pump 6 in this manner assists the pumping activity of the heart or replaces it.


A rotor 9 is shown schematically in the interior of the pump 6 and rotates, driven by the shaft 4, about its longitudinal axis and conveys the blood in the axial direction from the heart chamber 2 toward the blood vessel 1. Such an axial flow pump is typically provided with a housing and with a rotor having conveying impellers journalled therein.


Such heart pumps are already known in different construction forms, with in particular the radial compressibility of such pumps playing a large role for its performance capability. The pumps should be able to be introduced through the blood vessel 1 in compressed form and thereupon be expandable so that the conveying impellers can convey the blood with conveying surfaces which are as large as possible and in a sufficiently large flow cross-section. For this purpose, different rotor designs with foldable rotors and housings are already known. The rotor in accordance with the invention will be described in more detail with reference to the following Figures.



FIG. 2 for this purpose first shows an embodiment of a one-piece impeller blade which is rotated spirally about an axis of rotation 10. A shaft 11 is provided which axially adjoins the impeller blade 12, but does not pass through it. The impeller blade 12 is in this respect self-supporting and transfers the torque without a neck being necessary.


The impeller blade 12 can be manufactured in one piece with the shaft root 11 and, optionally, with a further shaft root on the axially oppositely disposed side of the impeller blade 12, for example, from plastic in an injection molding process.



FIG. 2 schematically shows the outer shape of the impeller blade 12 without looking more closely at the inner structure. This will be described more exactly within the framework of the invention with reference to Figures following further below.



FIG. 3 shows the impeller blade of FIG. 2 from the same perspective, with, however, lines invisible per se being shown in dashed form. FIG. 4 shows a representation in which the three-dimensional shape is shown more plastically with reference to hatching.



FIG. 5 shows a side view of the impeller blade 12 and of the shaft root 11, with a section being indicated by VI which is shown in more detail in FIG. 6.



FIG. 7 shows another embodiment of a rotor, in which the impeller blade 12 is surrounded by a tubular support device or envelope to which it is rigidly connected in this embodiment so that the tubular envelope or support device 13 rotates with the impeller blade 12. The envelope is connected to the shaft root 11 by means of a fork-like holder 14. The holder can also be made as a spatially rotated triangular plate which can be directly connected to the end of the impeller blade 12. The envelope is advantageously compressible and expandable and provides a hold for the impeller blade 12. The envelope 13 can, for example, comprise a plastic tube piece which can be surrounded by a wire meshwork for support. The wire meshwork can also comprise a shape memory material so that it can support the sleeve 13 via a shape change. In particular in the case that the impeller blade 12 is made neckless and is stabilized in a self-supporting manner, it can be connected to the inner sides of the sleeve 13 and can be spanned by its expansion movement.



FIG. 8 shows the view of FIG. 7, with lines invisible per se being drawn in dashed form, and FIG. 9 shows a three-dimensional representation of the impeller blade 12, with the shape being emphasized by hatching.



FIG. 10 shows as a further variant an impeller blade 12′ which is surrounded by a sleeve 13 and which has a shaft root 11′ integrated into its shape which is per se not connected to the sleeve 13.



FIG. 11 shows an embodiment of a sleeve 13 with two shaft roots 11 at both sides which are each connected via a fork-like holder 14 to the sleeve 13, but not to the impeller blade.


As in FIGS. 2 to 10, it can also be seen here that the impeller blade can have a substantially unchanging cross-section without thickened portions; cross-sectional changes are, however, by no means precluded. Correspondingly, the torque is transferred via the areal body itself so that no neck is needed.



FIG. 12 shows the structure of a typical impeller blade 12 which is spanned by webs 15, 16, 17 in more detail. In addition, marginal strips 18, 19 are drawn in which can typically comprise the same material as the webs 15, 16, 17. The individual webs are made as wavy, with the respective wave contour in each case remaining within the impeller blade surface. The webs can thereby be spanned, and thus expanded and compressed, in the surface of the impeller blade. This wave structure moreover produces a stiffening perpendicular to the impeller blade surface.


The webs can, for example, comprise a shape memory material such as nitinol, which additionally facilitates the compression and expansion of the impeller blade 12.


The impeller blade 12 generally comprises in the example shown a substantially rectangular frame whose marginal strips 20, 21 at the end face, drawn in FIG. 13, are rotated against one another by 180 degrees about the axis of rotation 10 to form a spiral structure. A single, contiguous surface hereby results which extends radially to all sides of the axis of rotation 10 and has at every level of the axis of rotation impeller blade regions which are mutually oppositely disposed with respect to the axis of rotation 10. A high symmetry of the impeller blade with correspondingly symmetrical force distribution is hereby achieved. The starting body can generally also have different base shapes than the rectangular shape, with it being advantageous if the body later, in spiraled form, covers the cross-section of a rotor housing as much as possible and if its outer contour maps the inner contour of the housing as exactly as possible.


In the embodiment of FIGS. 12, 13, 14, 15, the shaft roots 11 can be contiguous in one piece or by a weld connection with the webs 15, 16, 17 and the marginal strips 18, 19, 20, 21 so that the total rotor can be manufactured particularly simply and inexpensively and reliable connections are present for the transfer of the torque. The frame formed from the webs 15, 16, 17 and the marginal strips 18, 19, 20, 21 is typically covered with a thin, highly flexible film which forms the actual conveying surface.


The impeller blade is connected to one or both of its axial ends in each case by a drive journal which in each case axially adjoins the impeller blade.


Due to the omission of a neck in the axial region of the impeller blade 12, the compression is facilitated, on the one hand, since the webs can deform over their total length; on the other hand, the rotor becomes flexible, whereby the introduction in compressed form along a blood vessel can be facilitated. In accordance with the described embodiment, the webs are connected at points at intersections and form a network which additionally gives the impeller blade stiffness.



FIGS. 16, 17 and 18 show a rotor in two side views and in one tree-dimensional view with an impeller blade 12′ in which the individual webs 15′, 16′ substantially extend along the axis of rotation 10 and in this respect spirally about it. A good compressibility for the rotor hereby results in the radial direction and, with corresponding covering, a conveying surface which has only few irregularities for the fluid to be conveyed so that only relatively little damage of blood components is to be feared even at high speeds. Even at a high fluid counterpressure, which can be adopted at high rotor speeds, evasive movement of the impeller blade 12′ are tightly limited by a good stabilization of the webs. In this embodiment, too, the impeller blade can be considered as a whole as a rectangular frame whose two oppositely disposed end-face marginal strips 20′, 21′ are rotated against one another by 180 degrees about the axis of rotation 10. The manufacture of a corresponding planar frame with parallel webs 15′, 16′ is particularly simple.



FIGS. 20, 21, 22 show, in two side views and in one three-dimensional view, an impeller blade 12″ having two shaft journals 11′, with the impeller blade having webs 15″, 16″ which extend horizontally transversely to the axis of rotation 10 and which are in each case straight per se, but give the impeller blade 12″ as a whole the same helical structure such as is given with respect to the contour in the impeller blade in accordance with FIG. 17. In particular when the impeller blade 12″ is supported by an outer envelope and is connected thereto, the webs 15″, 16″ of the impeller blade 12″ can be particularly efficiently stretched on the expansion movement with the result of a stable impeller blade. The foil spanned between the webs and the marginal strips 20″, 21″ is thereby likewise stabilized so that it stands fold-free in the fluid to be conveyed.



FIG. 23 shows for this purpose an end-face view of the rotor with the webs extending beyond the axis of rotation.



FIGS. 24-27 show an embodiment similar to that shown in FIGS. 20-23, with an impeller blade 12′″ whose webs 15′″, 16′″ extend transversely to the axis of rotation 10, with the individual webs 15′″, 16′″ not extending straight per se, but rather being curved in wave shape for the achieving of further improved impeller blade geometry, as required. This can, for example, be achieved by introduction of an attenuated region 30 in each case at the center of each web 15′″, 16″″ which facilitates an evasion of each web from the straight direction on adoption of the shown helical shape of the impeller blade 12′″. However, it can also be achieved by a defined prebending of the webs. The advantage hereby achieved is, on the one hand, that the webs adopt a defined preferred direction on compression so that no undefined kinking loads of the webs occur on the compression. A further advantage comprises the fact that the precurved webs adopt an increasingly straight shape when they evade the fluid pressure in the operating state, which is almost unavoidable with such elastic structures. The rotor of FIGS. 24 to 27 could then, for example, adopt the shape of the rotor of FIGS. 20 to 23 in the operating state.


In this embodiment, too, as in the other above-described embodiments, the impeller blade as a whole is surrounded by marginal strips for fastening the film forming the conveying surface and for stabilizing the impeller blade.


The construction principle shown in FIGS. 12 to 26 generally allows any desired design of the webs so that extensive optimization possibilities are present here to design the pattern in accordance with the demands.


In an advantageous embodiment, in this respect, the webs are made so that only elastic deformations occur on the deformation of the rotor into the designated compressed form so that the rotor can unfold automatically into the designated uncompressed form after removal of the forces triggering the compression.


This designated uncompressed form is not necessarily the form of the rotor in the operating state since it possibly deforms further under the influence of the fluid pressure.


A particularly advantageous design of the rotor is now such that the rotor is subject only to elastic deformations under the influence of the fluid pressure and shows the ideal geometry for the application at the designated working point.


Overall, the design of the rotor of an axial flow pump in accordance with the invention having the corresponding impeller blade allows a material-saving and technically simple manufacture of the rotor which combines a good compression capability with high stability in operation.

Claims
  • 1. A compressible rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade which has at least one part surface which extends transversely to the axis of rotation and beyond it, wherein the impeller blade has webs which each, individually or as a network, connect one or more respective further webs forming a respective margin of the impeller blade to one another in different marginal regions of the impeller blades, wherein the connecting webs and the further webs, which form the margin of the impeller blade, comprise the same material, wherein at least one web or the network of webs connects two marginal regions of the impeller blade beyond the axis of rotation.
  • 2. The rotor in accordance with claim 1, wherein the impeller blade is neckless.
  • 3. The rotor in accordance with claim 1, wherein the impeller blade is self-supporting.
  • 4. The rotor in accordance with claim 1, wherein at least one web or the network of webs connects two marginal regions of the impeller blade which are disposed mutually opposite viewed in the longitudinal direction of the axis of rotation.
  • 5. The rotor in accordance with claim 1, wherein two or more respective webs are provided which extend parallel to one another or at a constant spacing from one another.
  • 6. The rotor in accordance with claim 1, wherein at least one of the webs is made in meandering form.
  • 7. The rotor in accordance with claim 1, wherein marginal regions of the impeller blade are made as marginal strips or marginal webs.
  • 8. The rotor in accordance with claim 7, wherein the impeller blade is surrounded by a throughgoing marginal strip or a throughgoing marginal web.
  • 9. The rotor in accordance with claim 1, wherein the impeller blade is manufactured as a lattice or as a network of webs from a planar metal sheet.
  • 10. The rotor in accordance with claim 9, wherein the impeller blade is manufactured, in particular from a nitinol metal sheet, by cutting out the webs, in particular by water cutting, laser cutting or electric erosion.
  • 11. The rotor in accordance with claim 10, wherein the webs are shaped in meandering form in the plane of the metal sheet and/or perpendicular thereto.
  • 12. The rotor in accordance with claim 10, wherein the webs have a different area moment of inertia in the plane of the metal sheet than perpendicular thereto.
  • 13. The rotor in accordance with claim 1, wherein the impeller blade is fixedly connected to a hollow cylindrical component surrounding it.
  • 14. The rotor in accordance with claim 1, wherein a film is spanned between the webs and the margin of the impeller blade.
  • 15. The rotor in accordance claim 1, wherein the impeller blade is compressible radially together with the hollow cylindrical component.
  • 16. A compressible rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade which has at least one part surface which extends transversely to the axis of rotation and beyond it, wherein the impeller blade has webs which each, individually or as a network, connect one or more respective further webs forming a respective margin of the impeller blade to one another in different marginal regions of the impeller blades, wherein the connecting webs and the further webs, which form the margin of the impeller blade, comprise the same material, wherein the webs comprise a shape memory alloy.
  • 17. A compressible rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade, wherein the impeller blade is made neckless as a body flat with respect to its contour which is spirally rotated about an axis.
  • 18. A rotor for an axial flow pump for conveying a fluid having an axis of rotation and having an impeller blade which has at least a part surface which extends transversely to the axis of rotation and beyond it, wherein the impeller blade has webs which each, individually or as a network, connect different marginal regions of the impeller blade to one another, wherein the webs comprise a shape memory alloy.
Priority Claims (1)
Number Date Country Kind
09075440 Sep 2009 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2010/005866 9/22/2010 WO 00 5/17/2012
Publishing Document Publishing Date Country Kind
WO2011/035926 3/31/2011 WO A
US Referenced Citations (136)
Number Name Date Kind
3510229 Smith et al. May 1970 A
3568659 Karnegis Mar 1971 A
3802551 Somers Apr 1974 A
3812812 Hurwitz May 1974 A
4014317 Bruno Mar 1977 A
4207028 Ridder Jun 1980 A
4559951 Dahl et al. Dec 1985 A
4563181 Wijayarathna et al. Jan 1986 A
4679558 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4753221 Kensey et al. Jun 1988 A
4801243 Norton Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4919647 Nash Apr 1990 A
4957504 Chardack Sep 1990 A
4969865 Hwang et al. Nov 1990 A
4995857 Arnold Feb 1991 A
5011469 Buckberg et al. Apr 1991 A
5040944 Cook Aug 1991 A
5042984 Kensey et al. Aug 1991 A
5052404 Hodgson Oct 1991 A
5061256 Wampler Oct 1991 A
5092844 Schwartz et al. Mar 1992 A
5097849 Kensey et al. Mar 1992 A
5108411 McKenzie Apr 1992 A
5112292 Hwang et al. May 1992 A
5113872 Jahrmarkt et al. May 1992 A
5117838 Palmer et al. Jun 1992 A
5118264 Smith Jun 1992 A
5145333 Smith Sep 1992 A
5163910 Schwartz et al. Nov 1992 A
5169378 Figuera Dec 1992 A
5181868 Gabriel Jan 1993 A
5183384 Trumbly Feb 1993 A
5191888 Palmer et al. Mar 1993 A
5201679 Velte, Jr. et al. Apr 1993 A
5275580 Yamazaki Jan 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5376114 Jarvik Dec 1994 A
5501574 Raible Mar 1996 A
5531789 Yamazaki et al. Jul 1996 A
5701911 Sasamine et al. Dec 1997 A
5755784 Jarvik May 1998 A
5776190 Jarvik Jul 1998 A
5813405 Montano, Jr. et al. Sep 1998 A
5820571 Erades et al. Oct 1998 A
5851174 Jarvik et al. Dec 1998 A
5882329 Patterson et al. Mar 1999 A
5888241 Jarvik Mar 1999 A
5938672 Nash Aug 1999 A
6030397 Monetti et al. Feb 2000 A
6129704 Forman et al. Oct 2000 A
6152693 Olsen et al. Nov 2000 A
6168624 Sudai Jan 2001 B1
6254359 Aber Jul 2001 B1
6302910 Yamazaki et al. Oct 2001 B1
6308632 Shaffer Oct 2001 B1
6336939 Yamazaki et al. Jan 2002 B1
6346120 Yamazaki et al. Feb 2002 B1
6387125 Yamazaki et al. May 2002 B1
6503224 Forman et al. Jan 2003 B1
6506025 Gharib Jan 2003 B1
6508787 Erbel et al. Jan 2003 B2
6517315 Belady Feb 2003 B2
6527521 Noda Mar 2003 B2
6533716 Schmitz-Rode et al. Mar 2003 B1
6537030 Garrison Mar 2003 B1
6537315 Yamazaki et al. Mar 2003 B2
6592612 Samson et al. Jul 2003 B1
6652548 Evans et al. Nov 2003 B2
6719791 Nusser Apr 2004 B1
6860713 Hoover Mar 2005 B2
6945977 Demarais et al. Sep 2005 B2
6981942 Khaw et al. Jan 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7074018 Chang Jul 2006 B2
7179273 Palmer et al. Feb 2007 B1
7393181 McBride et al. Jul 2008 B2
7467929 Nusser et al. Dec 2008 B2
7731675 Aboul-Hosn et al. Jun 2010 B2
7841976 McBride et al. Nov 2010 B2
7927068 Mcbride et al. Apr 2011 B2
7934909 Neusser et al. May 2011 B2
20020123661 Verkerke et al. Sep 2002 A1
20030135086 Khaw et al. Jul 2003 A1
20030231959 Snider Dec 2003 A1
20040044266 Siess et al. Mar 2004 A1
20040046466 Siess et al. Mar 2004 A1
20040093074 Hildebrand et al. May 2004 A1
20040215222 Krivoruchko Oct 2004 A1
20040215228 Simpson et al. Oct 2004 A1
20060008349 Khaw Jan 2006 A1
20060062672 McBride et al. Mar 2006 A1
20060195004 Jarvik Aug 2006 A1
20080132747 Shifflette Jun 2008 A1
20080262584 Bottomley et al. Oct 2008 A1
20080292478 Baykut et al. Nov 2008 A1
20080306327 Shifflette Dec 2008 A1
20090060743 McBride et al. Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090093796 Pfeffer et al. Apr 2009 A1
20100041939 Siess Feb 2010 A1
20100268017 Siess Oct 2010 A1
20110071338 McBride et al. Mar 2011 A1
20110236210 McBride et al. Sep 2011 A1
20110238172 Akdis Sep 2011 A1
20110275884 Scheckel Nov 2011 A1
20120039711 Roehn Feb 2012 A1
20120041254 Scheckel Feb 2012 A1
20120046648 Scheckel Feb 2012 A1
20120093628 Liebing Apr 2012 A1
20120101455 Liebing Apr 2012 A1
20120142994 Toellner Jun 2012 A1
20120184803 Simon et al. Jul 2012 A1
20120224970 Schumacher et al. Sep 2012 A1
20120234411 Scheckel Sep 2012 A1
20120237353 Schumacher et al. Sep 2012 A1
20120237357 Schumacher et al. Sep 2012 A1
20120264523 Liebing Oct 2012 A1
20120265002 Roehn et al. Oct 2012 A1
20120294727 Roehn Nov 2012 A1
20120301318 Er Nov 2012 A1
20120308406 Schumacher Dec 2012 A1
20130019968 Liebing Jan 2013 A1
20130041202 Toellner Feb 2013 A1
20130060077 Liebing Mar 2013 A1
20130066139 Wiessler et al. Mar 2013 A1
20130085318 Toellner Apr 2013 A1
20130177409 Schumacher et al. Jul 2013 A1
20130177432 Toellner Jul 2013 A1
20130204362 Toellner Aug 2013 A1
20130237744 Pfeffer et al. Sep 2013 A1
20140039465 Schulz et al. Feb 2014 A1
Foreign Referenced Citations (100)
Number Date Country
1008330 Apr 1977 CA
2311977 Dec 2000 CA
2701809 Apr 2009 CA
2701810 Apr 2009 CA
2207296 Aug 1972 DE
2113986 Sep 1972 DE
2233293 Jan 1973 DE
2613696 Oct 1977 DE
4124299 Jan 1992 DE
69103295 Dec 1994 DE
19535781 Mar 1997 DE
19711935 Apr 1998 DE
69407869 Apr 1998 DE
29804046 Jun 1998 DE
69017784 Apr 2000 DE
69427390 Sep 2001 DE
10059714 May 2002 DE
10108810 Aug 2002 DE
10155011 May 2003 DE
69431204 Aug 2003 DE
10336902 Aug 2004 DE
102010011998 Sep 2010 DE
0480102 Apr 1992 EP
0560000 Sep 1993 EP
0629412 Jan 1998 EP
0884064 Dec 1998 EP
0916359 May 1999 EP
1066851 Jan 2001 EP
0914171 Oct 2001 EP
0768091 Jul 2003 EP
0951302 Sep 2004 EP
1114648 Sep 2005 EP
1019117 Nov 2006 EP
1 738 783 Jan 2007 EP
1337288 Mar 2008 EP
2 047 873 Apr 2009 EP
2218469 Aug 2010 EP
2229965 Sep 2010 EP
2301598 Mar 2011 EP
2308524 Apr 2011 EP
2343091 Jul 2011 EP
2345440 Jul 2011 EP
2366412 Sep 2011 EP
1651290 Jan 2012 EP
2497521 Sep 2012 EP
2606919 Jun 2013 EP
2606920 Jun 2013 EP
2607712 Jun 2013 EP
2239675 Jul 1991 GB
2229899 Jun 2004 RU
9202263 Feb 1992 WO
9302732 Feb 1993 WO
9303786 Mar 1993 WO
9314805 Aug 1993 WO
9401148 Jan 1994 WO
9405347 Mar 1994 WO
9409835 May 1994 WO
9420165 Sep 1994 WO
9523000 Aug 1995 WO
9618358 Jun 1996 WO
9625969 Aug 1996 WO
9744071 Nov 1997 WO
9853864 Dec 1998 WO
9919017 Apr 1999 WO
WO 9944651 Sep 1999 WO
0027446 May 2000 WO
0043054 Jul 2000 WO
0062842 1 Oct 2000 WO
0107760 Feb 2001 WO
0107787 Feb 2001 WO
0183016 Nov 2001 WO
03057013 Jul 2003 WO
03103745 Dec 2003 WO
2005002646 Jan 2005 WO
2005016416 Feb 2005 WO
2005021078 Mar 2005 WO
2005030316 Apr 2005 WO
2005032620 Apr 2005 WO
2005081681 Sep 2005 WO
2006020942 Feb 2006 WO
2006034158 Mar 2006 WO
2006133209 Dec 2006 WO
2007003351 Jan 2007 WO
2007103390 Sep 2007 WO
2007103464 Sep 2007 WO
2007112033 Oct 2007 WO
2008017289 Feb 2008 WO
2008034068 Mar 2008 WO
2008054699 May 2008 WO
2008106103 Sep 2008 WO
2008116765 Oct 2008 WO
2008124696 Oct 2008 WO
2008137352 Nov 2008 WO
2008137353 Nov 2008 WO
2009015784 Feb 2009 WO
2010133567 Nov 2010 WO
2013034547 Mar 2013 WO
2013092971 Jun 2013 WO
2013093001 Jun 2013 WO
2013093058 Jun 2013 WO
Related Publications (1)
Number Date Country
20120237357 A1 Sep 2012 US
Provisional Applications (1)
Number Date Country
61244600 Sep 2009 US