The present invention generally relates to reduction in noise of rotor blades, and more particularly, but not exclusively, to the noise reduction of open rotor blades driven by gas turbine engines.
Noise suppression techniques useful with bladed rotors that are driven by internal combustion engines, such as a gas turbine engine, remains an area of interest. Some existing systems have various shortcomings relative to certain applications. Accordingly, there remains a need for further contributions in this area of technology.
One embodiment of the present invention is a unique rotor noise suppression system for use with a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for rotor noise suppression. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
For purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
With reference to
As used herein, the term “aircraft” includes, but is not limited to, helicopters, airplanes, unmanned space vehicles, fixed wing vehicles, variable wing vehicles, rotary wing vehicles, unmanned combat aerial vehicles, tailless aircraft, hover crafts, and other airborne and/or extraterrestrial (spacecraft) vehicles. Further, the present inventions are contemplated for utilization in other applications that may not be coupled with an aircraft such as, for example, industrial applications, power generation, pumping sets, naval propulsion, weapon systems, security systems, perimeter defense/security systems, and the like known to one of ordinary skill in the art.
In the illustrated embodiment, the internal combustion engine 50 includes a compressor 52, combustor 54, and turbine 56 which together are used together to produce a useful power. Though the gas turbine engine 50 is disclosed as a single spool turbojet engine, in other embodiments the gas turbine engine 50 can be a multi spool engine. In any number of embodiments the gas turbine engine 50 can be an axial flow, centrifugal flow, or mixed flow engine. In some embodiments the gas turbine engine 50 can be an adaptive and/or variable cycle engine.
With reference to
In the illustrated embodiment a plurality of the apertures 110 are disposed radially outwardly along the span of the airfoil member 120. The aperture 110 can take any variety of forms and shapes such as round or oblong form, a singular slot or series of slots disposed along the airfoil member 120, etc. Not all apertures associated with the airfoil member 120 need be the same. Some variation can be present in the apertures. For example, some apertures 110 located closest to a root of the airfoil member 120 can have different shapes than apertures 110 located closer to a tip of the airfoil member 120. In short, the aperture 110 can take any form such that a fluid 114 received from the fluid source 108 can exit from the airfoil 120 through the aperture 110. The aperture 110 can also be located in any variety of chord locations. For example, the aperture 110 can be located near the trailing edge 112 of the airfoil member 120. In one form, the aperture 110 is located at an intersection of the mean camber line 102 and the trailing edge 112. The aperture 110 can be flush with the airfoil 120 at a location where the fluid 114 exits the airfoil 120.
A flow channel 116 places the aperture 110 in flow communication with the fluid source 108. The flow channel 116 extends within the airfoil 120 and can terminate at the aperture 110. A plurality of flow channels 116 can extend from the fluid source 108 to the aperture 110, or alternately a single flow channel 116 can split into a plurality of flow channels 116 to provide the fluid 114 to the aperture 110. A flow regulator 122 can control a flow of the fluid 114 through the flow channel 116. The flow regulator 122 can take the form of a valve 122 which can be a simple on/off valve, a variable flow valve, or any other valve 122 which can alter a flow of the fluid 114 through the flow channel 116.
Referring to
The airfoil member 120 is disposed upstream of an airfoil 314, both of which are rotatable about an axis 62. In one form the axis 62 is a centerline axis of the gas turbine engine 50. The airfoil member 120 and the airfoil 314 can be open rotor blades 120, 314 which act upon a working fluid 316 and increase a velocity of the free stream 316. In an open rotor architecture 306, the airfoil member 120 and the airfoil 314 act upon the free stream 316 to provide a motive force for the aircraft 51. Various configurations of open rotor concepts will be appreciated, one of which shows the airfoil members 120 and 314 positioned at an aft location relative to a nacelle 312 as depicted in the illustrated embodiment. The nacelle 312 in the illustrated embodiment includes an upstream inlet structured on a forward end to receive the working fluid 58, and the exhaust exit 318 on an aft end of the nacelle 312. The free stream 316 can be defined as an airflow which is not directly acted upon or directly affected by turbomachinery within the casing (not shown) of the gas turbine engine 50. The exhaust gas 60 emitted from the airfoil 120 alters a velocity gradient of the working fluid 316 downstream of the airfoil 120 and upstream of the airfoil 314 in a manner such that a reduction in the amount of noise produced by airfoil 314 as it is rotated through the working fluid 316 can occur. The exhaust gas 60 emitted from the airfoil 120 reduces the impact of the blade wake on the airfoil 314. In one embodiment both the airfoil member 120 and airfoil 314 can include the apertures 110 discussed above.
The airfoil member 120 and the airfoil member 314 can be counter rotating relative to one another such that the airfoil member 120 can be rotated in a first direction 308 and the airfoil 314 can be rotated in a second direction 310, the first direction 308 being opposite the second direction 310.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment(s), but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as permitted under the law. Furthermore it should be understood that while the use of the word preferable, preferably, or preferred in the description above indicates that feature so described may be more desirable, it nonetheless may not be necessary and any embodiment lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow. In reading the claims it is intended that when words such as “a,” “an,” “at least one” and “at least a portion” are used, there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.
This application claims priority to U.S. Provisional Application Ser. No. 61/775,100, entitled “Rotor Noise Suppression,” filed Mar. 8, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3572960 | McBride | Mar 1971 | A |
3572961 | Medawar | Mar 1971 | A |
3677503 | Freeman, Jr. | Jul 1972 | A |
3776363 | Kuethe | Dec 1973 | A |
3844677 | Evans et al. | Oct 1974 | A |
4089618 | Patel | May 1978 | A |
4131387 | Kazin | Dec 1978 | A |
4199295 | Raffy et al. | Apr 1980 | A |
4370097 | Hanson | Jan 1983 | A |
6004095 | Waitz et al. | Dec 1999 | A |
6139259 | Ho et al. | Oct 2000 | A |
6375416 | Farrell et al. | Apr 2002 | B1 |
6948906 | Leishman et al. | Sep 2005 | B2 |
9102397 | Wood | Aug 2015 | B2 |
20100034640 | Dev | Feb 2010 | A1 |
20100124500 | Lebrun | May 2010 | A1 |
20120107133 | Guillaume et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
10 2009 036011 | Feb 2011 | DE |
2090765 | Aug 2009 | EP |
2169968 | Jul 1986 | GB |
Entry |
---|
International Search Report and Written Opinion, mailed Oct. 30, 2014, for International Patent Application No. PCT/US2013/078410, filed Dec. 31, 2013. |
International Search Report and Written Opinion, International Application No. PCT/US2013/078410, search completed Oct. 23, 2014, 11 pages. |
Brookfield, J.M.; Waltz, I.A.; Trailing-Edge Blowing for Reduction of Turbomachinery Fan Noise; Journal of Propulsion and Power; vol. 16, No. 1, Jan.-Feb. 2000I; pp. 57-64. |
Number | Date | Country | |
---|---|---|---|
20150040538 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61775100 | Mar 2013 | US |