The subject matter of this application is related to the subject matter of British Patent Application No. GB 0309340.8, filed Apr. 24, 2003, priority to which is claimed under 35 U.S.C. § 119 and which is incorporated herein by reference.
1. Field of the Invention
Embodiments of this invention relate to sensorless rotor position determination in reluctance machines, particularly, but not exclusively, in switched reluctance machines.
2. Description of Related Art
The control and operation of switched reluctance machines generally are described in the paper “The Characteristics, Design and Applications of Switched Reluctance Motors and Drives” by J M Stephenson and R J Blake delivered at the PCIM'93 Conference and Exhibition held in Nurnberg, Germany, 21–24 Jun. 1993, which is incorporated herein by reference. In that paper the “chopping” and “single-pulse” modes of energization of switched reluctance machines are described for operation of the machine at low and high speeds, respectively.
A typical prior art drive is shown schematically in
The performance of a switched reluctance machine depends, in part, on the accurate timing of phase energization with respect to rotor position. Detection of rotor position is conventionally achieved by using a transducer 15, shown schematically in
Various methods for dispensing with the rotor position transducer have been proposed. Several of these are reviewed in “Sensorless Methods for Determining the Rotor Position of Switched Reluctance Motors” by W F Ray and I H Al-Bahadly, published in the Proceedings of The European Power Electronics Conference, Brighton, UK, 13–16 Sep. 1993, Vol. 6, pp 7–13, incorporated herein by reference.
Many of these methods proposed for routine rotor position estimation in an electrically driven machine use the measurement of phase flux-linkage (i.e. the integral of applied voltage with respect to time) and current in one or more phases. Position is calculated using knowledge of the variation in inductance of the machine as a function of angle and current. This characteristic can be stored as a flux-linkage/angle/current table and is depicted graphically in
Some methods make use of this data at low speeds where “chopping” current control is the dominant control strategy for varying the developed torque. Chopping control is illustrated graphically in
Other methods operate in the “single-pulse” mode of energization at higher speeds. This mode is illustrated in
Instead of opening both switches simultaneously, there are circumstances in which it is advantageous to open the second switch an angle θf later than θon, allowing the current to circulate around the loop formed by the closed switch, the phase winding and a diode. A typical waveform is illustrated in
To avoid the flux-linkage integrator drifting (due to unwanted noise in the system and imperfections in the integrator) it is set to zero at the end of each conduction cycle, when the current has fallen to zero and the phase winding is no longer linking any flux. This method is a “predictor/corrector” method, in that it initially predicts when the rotor will be at a reference position, measures parameters of the machine when it believes the reference position has been reached, and uses the results of these measurements to detect error in the prediction and hence take corrective action by adopting a new prediction for the next reference position.
The phase inductance cycle of a switched reluctance machine is the period of the variation of inductance for the, or each, phase, for example between maxima when the rotor poles and the relevant respective stator poles are fully aligned.
It is known that the shape of the phase current waveform of a switched reluctance machine in single-pulse mode is related to the inductance profile of the phase winding. In particular, the start of the rising portion of the inductance profile, which is due to the onset of overlap between the stator and rotor poles, corresponds to the rollover when the phase current changes from rising to falling in the phase inductance cycle. EP1109309A, incorporated herein by reference, discusses this phenomenon and uses the natural peak in current, in single-pulse operation, as the basis of a rotor position detection method.
If there is no excitation on the winding, for example, if a machine is coasting, or excitation is lost because the history of previous excitation has been corrupted because of noise or mechanical disturbances, a position detection method is desired which will estimate position and give a seamless transfer into excitation without having to stop the drive. The inventors have understood that in certain cases there is a desire for a sensorless control method that can operate over a wide speed range without prior knowledge of the excitation history of the drive.
It is an object of embodiments of the present invention to provide a robust and cost-effective method of determining rotor position without using a rotor position transducer.
In one form, embodiments of the invention provide a method and system of determining the position of a moving rotor by means of a continuous current created in one phase winding that has a waveform which contains the basic temporal information relevant to various significant events in the phase inductance cycle of the machine. From one of these features it is possible to derive rotor position information.
One benefit of embodiments of the present invention is that they do not require any prior knowledge of the magnetic profile of the machine, for example, as shown in
An embodiment of the invention provides a method of determining rotor position for an electrical machine having a stator, with at least one phase winding, and a rotor, the method comprising: establishing a continuous current in the phase winding while the rotor is moving, the current having a waveform related to an inductance profile of the machine which is cyclical with rotor position; detecting a predetermined feature in a cycle of the waveform; and deriving rotor position information from the occurrence of the feature.
The electrical machine is a switched reluctance machine, according to embodiments of the invention.
Continuous current is established by, for example, voltage pulses applied across the phase windings. The occurrence of the voltage pulses can be asynchronous as they are used only to establish the continuous current. Because of this they do not have to be referenced to any aspect of the phase inductance cycle. The voltage profile applied to the phase is optionally a voltage pulse and a lower amplitude voltage of opposite polarity between pulses.
A convenient feature on which to base assessment of rotor position is the rollover of current coincident with the start of rising inductance in the phase inductance profile.
Embodiments of the invention are particularly applicable to a coasting machine because the relatively small current induced in a single phase winding has a waveform that contains all the information required to determine rotor position that would otherwise be found in the equivalent current waveform when the machine is operated.
The invention can be put into practice in a number of ways, some of which will now be described by way of example and with reference to the accompanying drawings in which:
a) shows a typical motoring current waveform in chopping control;
b) shows a typical motoring current waveform in single-pulse control;
c) shows a typical motoring current waveform in single-pulse control using freewheeling;
The illustrative embodiment to be described uses a 2-phase switched reluctance drive in the motoring mode, but any phase number could be used, with the drive in either motoring or generating mode.
According to an embodiment of the invention, a stream of data is derived from a rotating machine by actively injecting into a single phase winding a voltage that is small relative to the excitation voltage applied across the winding, and subsequently allowing the current induced by the voltage to freewheel for the remainder of the complete phase cycle. The voltage profile, and particularly the voltage pulse, is chosen so that a continuous current is maintained in the phase winding. By injecting the small voltage as pulses, the information required for determining rotor position relative to the stator is created in the resultant cyclical phase current, which is shown in the trace of
The magnitude of the injected voltage should be chosen carefully for the particular drive being considered, but typically has an average value below 10% of the rated excitation voltage applied to drive the machine. The voltage is optionally provided from the main bus by applying PWM to the main switch(es) of one phase. Alternatively, a separate low-voltage source (either pulsed or invariable with time) is connected to a nominated phase. In both cases, the application of positive voltage causes the flux-linkage of the phase winding to rise at a rate determined by the magnitude of the voltage. When the voltage is removed, the negative voltage drop resulting from the sum of the voltage drops across the winding resistance, the diode and the switch cause the flux to fall at a lower rate. The current settles into a steady pattern, which is always positive and cyclic with the inductance profile of the winding, as shown by the trace in
It should be noted that there is no part of the cycle when the full negative voltage of the voltage bus is applied to the winding, unlike in normal operation of the machine. The voltage alternates between a short burst of high, positive voltage and a long period of much lower, negative, freewheeling voltage, as illustrated in
According to an embodiment of the invention, continuous rotor position information is available by detecting the occurrence of peaks in phase current created by the actively injected voltage pulses. Various methods of detecting the peak of the current waveform are possible. According to one embodiment the simplest form is for the processor 44 to be programmed to take a continuous stream of samples of current from the sensor 38 and to compare the most recent with the previous sample. If both samples are equal, then there has been no change in the magnitude of the current waveform. Hence, the point of zero rate of change of phase current with respect to time (di/dt) has been reached which, as described in EP1109309A, is assumed to be the point of pole overlap. However, while detection of the zero di/dt seems like an ideal solution to the sensorless issue, in practice it has limitations and can be unreliable, principally due to the noise on the measured current waveform.
A more robust approach is to use a method of slope detection which detects the onset of the downward slope after the peak current has been reached. Though this inevitably inserts a delay in detection of the point of pole overlap, the delay is, in fact, constant and this can be compensated for in the controller. The controller can therefore predict exactly when the next point of pole overlap will be encountered.
In this embodiment, in order to perform slope detection, the microprocessor 44 includes an algorithm that compares a sample with the previous sample (as in the implementation described earlier). However, rather than looking for two equal samples, it ignores all the samples greater than or equal to the previous one (i.e. when the waveform is increasing or is flat). Once the point is reached where the present sample is less than the previous sample, it can be assumed that the peak (zero di/dt) point has been passed and the current is now falling with a negative slope. This technique generates a sensorless detection pulse typically two samples after the true peak, with the sampling time being a fixed known quantity. This known time of two sample periods can then be compensated in the angle control software.
Improved performance can be achieved by modifying the algorithm programmed into the processor to detect a continuous negative slope over several samples, rather than assuming that the first negative slope computed is the true first sample after the peak of the current waveform. By looking for, say, two or more negative slope results from the samples and ignoring any zero change results (due, e.g., to slow rates of change at low speed and poor A/D resolution) it is safe to assume that the slope is definitely falling. The detection pulse is further delayed after the point of zero di/dt by a minimum of three samples, but this can be compensated for in the controller 42 as it is a known quantity of time.
Since there is no need to have even approximate knowledge of the rotor position to implement embodiments of this invention (unlike many other methods of position detection), the PWM pulses of voltage may be applied at any point in the inductance cycle, i.e., they can be asynchronous to the current waveform, allowing the method to be implemented without knowledge of rotor speed. Close inspection of
It is seen from the above description that it is only necessary to cause current to flow in one phase to detect position. The method is independent of the presence or absence of current, for any reason, in other phases. However, it may be advantageous to apply the method to two or more phases simultaneously, thus increasing the rate at which the rotor position is detected. This may have particular advantage if the speed of the rotor is changing rapidly, either upwards or downwards.
It will be realized that a finite amount of time elapses to build up the continuous current of, for example,
The embodiments described above detect the onset of pole overlap and hence deduce rotor position. Other embodiments of the invention detect other points on the inductance profile. For example, the position of maximum inductance (Lmax), i.e. the point at which rotor poles are fully aligned with stator poles, can be detected by detecting the middle of the trough in the current waveform. Other points on the current waveform which have a relationship to the inductance profile may likewise be detected. It will also be appreciated that the feature occurs in a single cycle of the waveform. Thus, only current for a single cycle need be established in order for detection to take place. Similarly, it will be realized that the cycle itself need not be continuous, e.g. it optionally comprises several isolated sections which are observed by the controller in order for the feature to be detected.
The method may be applied with equal benefit to machines operating as motors or as generators.
The skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the invention, particularly in the details of the implementation of the algorithms in the controller. It will also be apparent that, while the technique has been described in relation to a switched reluctance machine, it can be used in relation to any machine with a cyclical inductance profile. The method can be applied to a phase whether or not there is excitation applied to any other phases that may be present in the machine. Also, while embodiments of the invention have been described in terms of a rotating machine the invention is equally applicable to a linear machine having a stator in the form of a track and a moving part moving on it. The word ‘rotor’ is used in the art to refer to the movable part of both rotating and linear machines and is to be construed herein in this way. Accordingly, the above description of several embodiments is made by way of example and not for the purposes of limitation. It will be clear to the skilled person that minor modifications can be made to the drive circuit without significant changes to the operation described above.
Number | Date | Country | Kind |
---|---|---|---|
0309340 | Apr 2003 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4074179 | Kuo et al. | Feb 1978 | A |
5015939 | Konecny | May 1991 | A |
5589751 | Lim | Dec 1996 | A |
5689165 | Jones et al. | Nov 1997 | A |
5793179 | Watkins | Aug 1998 | A |
5859518 | Vitunic | Jan 1999 | A |
5864217 | Lyons et al. | Jan 1999 | A |
5920175 | Jones et al. | Jul 1999 | A |
5955861 | Jeong et al. | Sep 1999 | A |
6051942 | French | Apr 2000 | A |
6153956 | Branecky | Nov 2000 | A |
6448738 | Burton et al. | Sep 2002 | B1 |
6586903 | Moriarty | Jul 2003 | B2 |
20020140395 | Tazawa et al. | Oct 2002 | A1 |
20020149342 | Nakata et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
0 470 685 | Feb 1992 | EP |
0 573 198 | Dec 1993 | EP |
0 780 966 | Jun 1997 | EP |
0 856 937 | Aug 1998 | EP |
WO 9102401 | Feb 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20040212359 A1 | Oct 2004 | US |