The subject matter disclosed herein relates to turbines and, more particularly, to systems for controlling the thermal condition of a steam turbine rotor support, specifically a rotor bearing support.
Some power plant systems, for example certain nuclear, simple cycle and combined cycle power plant systems, employ turbines in their design and operation. Some of these turbines include rotating portions (e.g., rotors) which are supported by rotor bearing supports within the turbine. These rotor bearing supports stabilize a position of the rotors and enable the rotors to be rotatable within the turbine. During operation, a working fluid (e.g., high temperature steam, high temperature gas, etc.) is directed through the turbine and across a length of the rotor; this working fluid driving the rotor to produce power for a variety of applications. Some of these rotors may have a substantial length which requires the use of multiple rotor bearing supports within the turbine. The location and proximity of the rotor bearing supports to the rotor may result in exposure to substantial thermal gradients. With differences in these thermal gradients ranging in the hundreds to thousands of degrees Celsius, the rotor bearing supports may significantly expand and contract in response to the temperature variations which occur during operation of the turbine. These expansions and contractions may adjust a height of the rotor bearing supports and subsequently a position of the rotor, requiring the turbine to include increased radial clearances between the rotor and turbine which may decrease system efficiency. Further, in turbines with lengthy rotors requiring multiple rotor bearing supports, variations in thermal conditions throughout the rotor may cause differential thermal variations between each of the rotor bearing supports, resulting in misalignment of the rotor.
Referring to
Systems for shielding and cooling turbine components are disclosed. In one embodiment, a thermal control system for a rotor bearing support includes: a housing fluidly connected to an inlet and adapted to substantially enclose the rotor bearing support, the housing defining a first annular cavity adapted to receive a fluid from the inlet; and an outlet fluidly connected to the housing, the outlet adapted to receive the fluid from the annular cavity.
A first aspect of the disclosure provides a thermal control system for a rotor bearing support including: a housing fluidly connected to an inlet and adapted to substantially enclose the rotor bearing support, the housing defining a first annular cavity adapted to receive a fluid from the inlet; and an outlet fluidly connected to the housing, the outlet adapted to receive the fluid from the annular cavity.
A second aspect provides a turbine bucket including: a stator; a rotor substantially enclosed within the stator; a set of rotor bearings connected to the rotor; a first rotor bearing support connected to a first portion of the set of rotor bearings; a second rotor bearing support connected to a second portion of the set of rotor bearings; and a thermal control system connected to the first rotor bearing support, the thermal control system comprising: an inlet; a housing fluidly connected to the inlet and adapted to substantially enclose the rotor bearing support, the housing defining a first annular cavity adapted to receive a fluid from the inlet; and an outlet fluidly connected to the housing, the outlet adapted to receive the fluid from the annular cavity.
A third aspect provides a power generation system including: a generator; a turbine operatively connected to the generator; a rotor disposed within the turbine; a set of rotor bearings connected to the rotor; a first rotor bearing support connected to a first portion of the set of rotor bearings; a second rotor bearing support connected to a second portion of the set of rotor bearings; and a thermal control system connected to the first rotor bearing support, the thermal control system comprising: an inlet; a housing fluidly connected to the inlet and adapted to substantially enclose the rotor bearing support, the housing defining a first annular cavity adapted to receive a fluid from the inlet; and an outlet fluidly connected to the housing, the outlet adapted to receive the fluid from the annular cavity.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the disclosure are not necessarily to scale. The drawings are intended to depict only typical aspects of the disclosure, and therefore should not be considered as limiting the scope of the disclosure. In the drawings, like numbering represents like elements between the drawings.
As indicated herein, aspects of the invention provide for systems adapted to monitor and regulate a set of thermal conditions about and within a rotor support. These systems employ a housing adapted about the rotor support and operatively connected to a fluid system, the fluid system supplying adjustable quantities of a thermally controlled fluid to the housing, thereby thermally monitoring and regulating thermal conditions within and about the rotor support.
In the art of power generation systems (including, e.g., nuclear reactors, steam turbines, gas turbines, etc.), turbines driven by high temperature fluids (e.g., steam) are often employed as part of the system. The high temperature steam is directed through the turbine, thereby rotating a rotor and converting thermal energy into mechanical energy. However, the high temperature steam may have negative effects on certain components of the turbine such as the rotor and the rotor support, increasing the maintenance cost of the system and significantly reducing the efficiency and lifespan of the rotor. The rotors in some turbines are supported by multiple rotor bearing supports. Thermal conditions within the turbine may vary significantly during operation, causing these rotor bearing supports to expand and contract differentially. The expansion and contraction of the rotor bearing supports caused by these thermal variations may cause the rotor to bow or misalign within the turbine, reducing the efficiency of the system, wearing and/or damaging components and requiring excessive radial tolerances or clearances to be designed into the turbine.
Embodiments of the current invention provide for systems and devices adapted to protect portions of a turbine system from deformities and damage due to exposure to thermal variations by using a thermal control system to regulate and limit exposure of turbine components to thermal variations. The thermal control system includes a housing which is adapted about a rotor support of the turbine system. The housing is fluidly connected to a fluid system which supplies a thermal fluid (e.g., low temperature steam, air, condensate, water, oil, gas, etc.) to the housing. The low temperature steam travels through the housing and about the rotor support, thereby thermally insulating and regulating a temperature of the rotor support.
Turning to the FIGURES, embodiments of a thermal control system are shown, where the thermal control system may impact the efficiency and increase the life expectancy of the rotor, the turbine and the overall power generation system by thermally insulating and regulating the rotor supports. Each of the components in the FIGURES may be connected via conventional means, e.g., via a common conduit or other known means as is indicated in
In an embodiment of the invention, fluid system 252 may be operatively connected to a control system 254. Control system 254 may be a feedback control system, a user operated control system or any other form of control system known in the art. In one embodiment, control system 254 may regulate a quantity of the thermal fluid supplied to thermal control system 240. In another embodiment, control system 254 may regulate a temperature of the thermal fluid in fluid system 252. In one embodiment, control system 254 may be communicatively connected to a sensor 223 (e.g., a thermometer, a displacement sensor, etc.) connected to second rotor bearing support 222. In one embodiment, sensor 223 may monitor a temperature of second rotor bearing support 222 and transmit the temperature to control system 254. In another embodiment, sensor 223 may monitor expansion, contraction and/or deformities of second rotor bearing support 222. In one embodiment, control system 254 may adjust a temperature of the thermal fluid in fluid system 252 based upon conditions/readings (e.g., a temperature) of second rotor bearing support 222 obtained by sensor 223. In one embodiment, control system 254 may adjust a temperature of the thermal fluid in fluid system 252 based upon conditions detected within second rotor bearing support 222. In one embodiment, sensor 223 may monitor a temperature of oil flooding the mid-standard bearing support of second rotor bearing support 222. In another embodiment, sensor 223 may monitor growth of second rotor bearing support 222. Control system 254 may adjust a temperature of thermal fluid in fluid system 252 based upon the calculated thermal growth of second rotor bearing support 222, wherein the thermal growth is calculated using temperature measurements from sensor 223. In one embodiment, control system 254 adjusts a temperature of the thermal fluid so as to substantially match growth of first rotor bearing support 220 with growth of second rotor bearing support 222, thereby maintaining a complementary height between first rotor bearing support 220 and second rotor bearing support 222.
In one embodiment of the invention, the thermal fluid is introduced into annular cavity 244 via an inlet 241, and then returned to fluid system 252 via an outlet 256 and a return conduit 257 (shown in phantom). In another embodiment, the thermal fluid is circulated through annular cavity 244 and then released to ambient via outlet 256. In one embodiment, the thermal fluid may comprise lube oil from a main lube oil system 280 (shown in phantom) of turbine 200. Main lube oil system 280 supplies lube oil to thermal control system 240 via inlet 241, the lube oil flowing through thermal control system 240 and being released back to main lube oil system 280 via outlet 256. In another embodiment, the thermal fluid may comprise condensate from a condenser 270 (shown in phantom) of turbine 200. Condenser 270 supplying condensate to thermal control system 240 via inlet 241, the condensate flowing through thermal control system 240 and being released back to a condensate feed pump 272 (shown in phantom) via outlet 256. In another embodiment, the thermal fluid may comprise a gas (e.g., air, nitrogen, etc.) from a compressor 288 (shown in phantom). Compressor 288 supplies a gas which is temperature and/or pressure controlled to thermal control system 240 via inlet 241. In one embodiment, thermal control system 240 may be adapted about both rotor bearing support 220 and rotor bearing support 222.
Turning to
Returning to
Turning to
Turning to
The thermal control system of the present disclosure is not limited to any one particular turbine, power generation system or other system, and may be used with other power generation systems and/or systems (e.g., combined cycle, simple cycle, nuclear reactor, etc.). Additionally, the thermal control system of the present invention may be used with other systems not described herein that may benefit from the thermal protection of the thermal control system described herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5147015 | Snuttjer et al. | Sep 1992 | A |
5281085 | Lenahan et al. | Jan 1994 | A |
6308776 | Sloan et al. | Oct 2001 | B1 |
6854514 | Sloan et al. | Feb 2005 | B2 |
20010047864 | Sloan et al. | Dec 2001 | A1 |
20050069406 | Turnquist et al. | Mar 2005 | A1 |
20100054927 | Almstedt et al. | Mar 2010 | A1 |
20100187180 | Baten | Jul 2010 | A1 |
20100284795 | Wadia et al. | Nov 2010 | A1 |
20110002774 | Karafillis et al. | Jan 2011 | A1 |
20110020116 | Hashimoto et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
2007633 | Mar 2000 | CA |
2686370 | Jun 2010 | CA |
2481971 | Jul 2010 | CA |
0563054 | Apr 1995 | EP |
2208862 | Jul 2010 | EP |
2218880 | Aug 2010 | EP |
2224099 | Sep 2010 | EP |
1918525 | Oct 2010 | EP |
2236772 | Oct 2010 | EP |
2467893 | Nov 2008 | GB |
59113210 | Jun 1984 | JP |
9211444 | Jul 1992 | WO |
2010136014 | Dec 2010 | WO |
2010136018 | Dec 2010 | WO |
2010136018 | Dec 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130094947 A1 | Apr 2013 | US |