Not applicable.
Not applicable.
Vehicles with multiple rotor systems are known to utilize power plants, such as electric motors or engines, that are generally collocated with the rotor systems away from a center of gravity of the vehicle. Conventional vehicles with multiple rotor systems that use a single power plant for powering multiple rotor systems may locate the power plant away from one or more rotor systems, but the rotor systems are typically connected to the power plant using heavy rotatable shafts. There remains a need for vehicles having multiple rotor systems that are not only lighter but also easily reconfigurable to move the rotor systems between stowed and deployed configurations.
In this disclosure, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of this disclosure, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
Referring now to
Referring now to
In this embodiment, rotor system 200 further comprises an inboard drive component 218, an outboard drive component 220, and a flexible closed loop component 222. In this embodiment, inboard drive component 218 and outboard drive component 220 each comprise toothed gears and closed loop component 222 comprises a toothed belt. In this embodiment, gear teeth 224 and belt teeth 226 are configured so that they complement each other and mesh in a conventional manner so that slippage between the closed loop component 222 and each of the inboard drive component 218 and outboard drive component 220 is minimized or prevented. Accordingly, under normal operation, rotation of either of the inboard drive component 218 and the outboard drive component 220 will cause progression of the closed loop component 222 and synchronous movement of each of the inboard drive component 218 and outboard drive component 220.
Each rotor system 200 comprises an inboard drive component 218 that is meshed with components of transmission 108 in a conventional manner. Accordingly, in this embodiment, rotation of any of the inboard drive components 218 causes rotation of the other inboard drive components 218, progression of each of the closed loop components 222, and ultimately rotation of each of the outboard drive components 220. Because the outboard drive components 220 are fixed to rotor shafts 204, rotation of the outboard drive components 220 also results in rotation of each of the rotor shafts 204 and associated rotor blades 202.
In this embodiment, transmission 108 is driven by drive shaft 110 which is selectively rotated by engine 112. Transmission 108 is configured so that adjacent ones of the inboard drive components 218 are caused to rotate in opposite directions about their respective inboard rotation axes 228. Accordingly, a sum of torques generated by rotation of the rotor blades 202 is substantially zero which allows stable operation of the aircraft 100 without the need for other counter torque mechanisms and methods.
In this embodiment, aircraft 100 comprises one or more locking mechanisms configured to selectively lock one or more rotor arms 106 into place relative to transmission 108. For example, in this embodiment, each rotor arm 106 is provided with a locking mechanism that selectively engages fuselage 102 to lock rotor arms 106 in either the stowed configuration or the deployed configuration. In alternative embodiments, not all rotor arms 106 are provided with independent locking mechanisms. For example, in some cases, the locking functionality of a single locking mechanism, due to the synchronistic kinematic arrangement, locks not only the rotor arm 106 associated with the locking mechanism but also the other rotor arms 106 since their movement is moved in concert with the controlling and lockable rotor arm 106. In this embodiment, rotor arms 106 can be move to and between the stowed and deployed configuration locations and can be selectively locked using retractable pins 230 that can be received within receptacles formed in or carried by fuselage 102. More specifically, rotor arms 106 can be disposed in a deployed quadcopter arrangement and locked in the deployed configuration using retractable pins 230. Similarly, rotor arms 106 can be disposed in a stowed arrangement in which rotor arms 106 are brought into positions substantially parallel to a bisection plane 232 that longitudinally bisects aircraft 100 when viewed from above.
It will be appreciated that in alternative embodiments, more or fewer rotor systems 200 and/or associated rotor arms can be utilized, such as, but not limited to, providing an octocopter type arrangement. Further, any other suitable means for locking rotor systems into place can be utilized. Still further, while a toothed belt and complimentary toothed gears are utilized in this embodiment, alternative embodiments can utilize chains, untoothed belts, circular cross-section belts, pulleys, and/or any other suitable means for transferring rotational power to a flexible closed loop component.
In this embodiment, transmission 108, drive shaft 110, and engine 112 are each disposed within fuselage 102, but in alternative embodiments, one or more of the components can be located at least partially outside an envelope of the fuselage or there may be no fuselage utilized. Aircraft 100 is substantially lighter and more easily maneuvered than conventional aircraft in some embodiments because the mass of transmission 108, drive shaft 110, and engine 112 are generally centrally located relative to the footprint of the aircraft when rotor systems are deployed. More specifically, there can be advantages to locating mass centrally as opposed to near the axes of rotation of the rotor blades. Further, the flexible closed loop components disclosed herein are generally lighter than metallic drive shafts that would conventionally be extended along rotor arms to drive rotor systems from a shared and centrally located transmission.
Referring to
At least one embodiment is disclosed, and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of this disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of this disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, Rl, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=Rl+k * (Ru-Rl), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 95 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention. Also, the phrases “at least one of A, B, and C” and “A and/or B and/or C” should each be interpreted to include only A, only B, only C, or any combination of A, B, and C.