The present disclosure relates generally to wind turbines, and more particularly to a rotor turning device for balancing a wind turbine rotor, for example, during rotor blade installation and/or repair.
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, generator, gearbox, nacelle, and one or more rotor blades. The rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
Typically, to initially install a rotor blade onto the wind turbine hub, a significantly large crane must be transported to the wind turbine site in order to provide a means for raising the rotor blade relative to the hub. Unfortunately, it is often extremely expensive to both transport the crane to the wind turbine site and operate the crane for the amount of time necessary to install the rotor blade(s). As a result, the costs of employing such large cranes currently accounts for a significant portion of the overall costs associated with initial wind turbine installations.
In addition, as wind turbines continue to increase in size, cranes having the capacity to lift a fully-assembled rotor to certain tower heights are often unavailable in certain geographic locations. Therefore, in such locations, a single blade installation (SBI) process is required. In the SBI process, the hub and rotor blades are installed atop the tower sequentially in consecutive lifts. More specifically, a pneumatic unbalanced rotor turning gear (URTG) drive is typically installed on the backside of the main gearbox which meshes with the teeth on the brake disc. One or more cranes then lift the hub atop the tower so that the hub can be secured to the nacelle. The entire drivetrain is then rotated using the pneumatic URTG drive such that a first axis of the hub is positioned horizontally and a rotor lock is applied. A first rotor blade can then be installed in a horizontal position. After the first rotor blade is secured and the crane(s) have released the blade, the pneumatic URTG device is used to rotate the hub through 120° so that the next rotor blade can be installed. This process is repeated until all rotor blades have been installed.
In most rotor turning applications, the rotor is balanced (i.e. all of the rotor blades are attached to the hub and functioning) and the loads required to turn the rotor are minimal. However, if a rotor blade is under repair, being installed, or is otherwise damaged (such as during the SBI process), an unbalance is introduced and the amount of force required to spin the rotor increases dramatically. More specifically, during the SBI process, the static and aerodynamic load of the unbalanced rotor (e.g. when only one or two rotor blades have been installed) may exceed capacity of the pneumatic URTG device. For example, the highest static load on the drivetrain typically occurs when there is only one rotor blade positioned horizontally or two rotor blades in a “sideways-V” position. In addition, the pneumatic URTG device is generally only suitable for smaller rotor blades (e.g. blades having a length up to about 50 meters). Another issue that arises is that an unbalanced rotor has a single equilibrium point that it will always try to rotate back to. This tendency to rotate back to equilibrium puts a large amount of stress on the pneumatic URTG device, especially when the technician is trying to hold the rotor in place.
Accordingly, an improved rotor turning device for balancing the wind turbine rotor, for example, during rotor blade installation and/or repair so as to address the aforementioned issues would be welcomed in the art.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a rotor turning device for balancing a rotor secured atop a tower of a wind turbine during installation and/or repair of one or more rotor blades of the wind turbine. The rotor turning device includes a hydraulic drive mechanism for operably engaging with a brake disc of the wind turbine. The brake disc is positioned adjacent to a gearbox of the wind turbine. The rotor turning device also includes a mounting device for securing the rotor turning device adjacent to the brake disc of the wind turbine. Thus, when the hydraulic drive mechanism engages the brake disc, the rotor is rotated to a desired position so as to position one or more rotor blades of the wind turbine in a balanced configuration.
In one embodiment the hydraulic drive mechanism may have one or more hydraulic drives. For example, in certain embodiments, the hydraulic drive mechanism may have a plurality of hydraulic drives. Further, each of the hydraulic drives may include a hydraulic motor and a gearbox. In another embodiment, each of the plurality of hydraulic drives may include a pinion secured at an end thereof. Each of the pinions have a plurality of gear teeth that engage teeth of the brake disc such that the plurality of hydraulic drives drive the pinions to engage the teeth of the brake disc, thereby rotating the brake disc.
In further embodiments, the mounting device may include a housing configured to receive the pinions of the plurality of the hydraulic drives. In additional embodiments, the mounting device may include one or more attachment locations secured to an outer surface of the housing. For example, in one embodiment, the attachment location(s) may include D-ring brackets. In addition, the rotor turning device may include one or more straps, slings, or chains arranged through the D-ring brackets for securing the rotor turning device to the brake disc.
In several embodiments, the rotor turning device may further include one or more torque drives for securing the device to a bedplate of the wind turbine. In such embodiments, the torque arm(s) may be secured to the mounting device. In yet another embodiment, the rotor turning device may include a locking mechanism for securing the hydraulic drive mechanism in the desired position.
In another aspect, the present disclosure is directed to a method for balancing a rotor secured atop a tower of a wind turbine during installation and/or repair of one or more rotor blades of the wind turbine. The method includes securing a mounting device of a rotor turning device adjacent to a brake disc of the wind turbine. The rotor turning device may also include a hydraulic drive mechanism for operably engaging with the brake disc. The brake disc is positioned adjacent to a gearbox of the wind turbine. The method also includes engaging, via the hydraulic drive mechanism, the brake disc of the wind turbine so as to rotate the rotor to a desired position that places one or more rotor blades of the wind turbine in a balanced configuration. It should be understood that the method may further include any of the additional steps and/or features described herein.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Generally, the present disclosure is directed to a hydraulic rotor turning device that attaches directly into the gearbox and is aligned with the brake disc. The hydraulic drive mechanism then spins the brake disc, which works through the gearbox and rotates the rotor and the rotor blades. The device may also include one or more torque arms which secure the device to the bedplate of the wind turbine to prevent bending and/or to provide a reaction location of the torque generated by the hydraulic drive mechanism.
As such, the hydraulic rotor turning device of the present disclosure provides numerous advantages not present in the prior art. For example, the hydraulic rotor turning device of the present disclosure allows for repairs on broken/damaged rotor blades to be down in the field, up-tower. Further, the hydraulic rotor turning device of the present disclosure enables crane-less pitch bearing exchanges and other future crane-less repairs for larger sized blades. Moreover, the hydraulic rotor turning device of the present disclosure is safe and efficient, as less time is needed for rotor rotation. In addition, the hydraulic rotor turning device of the present disclosure allows unbalanced rotors to be rotated and locked into any desired position.
Referring now to the drawings,
Referring now to
Each rotor blade 22 may also include a pitch adjustment mechanism 34 configured to rotate each rotor blade 22 about its pitch axis 36. Further, each pitch adjustment mechanism 34 may include a pitch drive motor 38 (e.g., any suitable electric, hydraulic, or pneumatic motor), a pitch drive gearbox 40, and a pitch drive pinion 42. In such embodiments, the pitch drive motor 38 may be coupled to the pitch drive gearbox 40 so that the pitch drive motor 38 imparts mechanical force to the pitch drive gearbox 40. Similarly, the pitch drive gearbox 40 may be coupled to the pitch drive pinion 42 for rotation therewith. The pitch drive pinion 42 may, in turn, be in rotational engagement with a pitch bearing 44 coupled between the hub 20 and a corresponding rotor blade 22 such that rotation of the pitch drive pinion 42 causes rotation of the pitch bearing 44. Thus, in such embodiments, rotation of the pitch drive motor 38 drives the pitch drive gearbox 40 and the pitch drive pinion 42, thereby rotating the pitch bearing 44 and the rotor blade 22 about the pitch axis 36. Similarly, the wind turbine 10 may include one or more yaw drive mechanisms 46 configured to change the angle of the nacelle 16 relative to the wind (e.g., by engaging a yaw bearing 48 of the wind turbine 10).
Referring now to
Still referring to
Further, as mentioned and as shown, the brake disc 52 may include one or more calipers 54 (only of which is shown), which are axially inlet by means of a pressing device 58 to the brake disc 52 and can be moved away. These components of the brake disc 52 may be mounted on a support member 60, which is secured to the gearbox via one or more screws 62. In addition, as shown, the brake disc 52 may include a plurality of radially-projecting gear teeth 64 at its circumference.
Referring now to
More particularly, as shown in
In another embodiment, the rotor turning device 100 may also include a locking mechanism 120, e.g. at opposing ends of the pinions 108, for securing the hydraulic drive mechanism 102 (i.e. the hydraulic drives 106) in the desired position, which also locks the rotor 20 in place.
As shown particularly in
Referring now to
As shown at (202), the method 200 includes securing the mounting device 104 of the rotor turning device 100 adjacent to the brake disc 52 of the wind turbine 10. As mentioned, the rotor turning device 100 may also include a hydraulic drive mechanism 102 for operably engaging with the brake disc 52. Thus, as shown at (204), the method 200 includes engaging, via the hydraulic drive mechanism 102, the brake disc 52 of the wind turbine 10 so as to rotate the rotor 20 to a desired position that places one or more rotor blades 22 of the wind turbine 10 in a balanced configuration.
In one embodiment, engaging, via the hydraulic drive mechanism 102, the brake disc 52 of the wind turbine 10 may include engaging gear teeth 110 of the pinions 108 secured at ends of the hydraulic drives 106 with the brake disc teeth 64 and driving the pinions 108 via the plurality of hydraulic drives 106, thereby rotating the brake disc 52. In another embodiment, the method 200 may include securing one or more straps, slings, or chains 122 through the D-ring brackets 116 and around the brake disc 52. In further embodiments, the method 200 may include securing the rotor turning device 100 to the bedplate 32 of the wind turbine 10 via one or more torque arms 66. In additional embodiments, the method 200 may include securing the hydraulic drive mechanism 102 in the desired position via the locking mechanism 120.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4201514 | Huetter | May 1980 | A |
4596209 | Haslach, Jr. | Jun 1986 | A |
5140856 | Larsen | Aug 1992 | A |
5219454 | Class | Jun 1993 | A |
6609889 | Vilsboll | Aug 2003 | B1 |
8683688 | Axelsson et al. | Apr 2014 | B2 |
20060210406 | Harvey | Sep 2006 | A1 |
20080181761 | Moore | Jul 2008 | A1 |
20080247873 | Egedal | Oct 2008 | A1 |
20090162202 | Nies | Jun 2009 | A1 |
20090278359 | Trede | Nov 2009 | A1 |
20090317250 | Gamble | Dec 2009 | A1 |
20100060000 | Scholte-Wassink | Mar 2010 | A1 |
20100320770 | Dahlhaug | Dec 2010 | A1 |
20110085756 | Hori | Apr 2011 | A1 |
20110103950 | Pesetsky | May 2011 | A1 |
20110206515 | Edenfeld | Aug 2011 | A1 |
20120047886 | Tsutsumi | Mar 2012 | A1 |
20120091724 | Bodenstein | Apr 2012 | A1 |
20120133147 | Numajiri | May 2012 | A1 |
20120133148 | Romeo | May 2012 | A1 |
20120137481 | Lindberg | Jun 2012 | A1 |
20130076042 | Amano | Mar 2013 | A1 |
20130228397 | Horn | Sep 2013 | A1 |
20130300125 | Ruschoff | Nov 2013 | A1 |
20130336775 | Blake | Dec 2013 | A1 |
20130341934 | Kawanishi | Dec 2013 | A1 |
20140133983 | Canedo Pardo | May 2014 | A1 |
20150014993 | Grant | Jan 2015 | A1 |
20150159625 | Hardwicke, Jr. | Jun 2015 | A1 |
20150308467 | Brokes | Oct 2015 | A1 |
20160017865 | Illing | Jan 2016 | A1 |
20160061191 | Wilson | Mar 2016 | A1 |
20180034264 | Wagoner | Feb 2018 | A1 |
20180313329 | Vanderwalker | Nov 2018 | A1 |
20190264654 | Spink | Aug 2019 | A1 |
20190277393 | Hasan | Sep 2019 | A1 |
20190345914 | Thomsen | Nov 2019 | A1 |
20200072188 | Neumann | Mar 2020 | A1 |
20200132045 | Curtis | Apr 2020 | A1 |
20200158079 | Torrecilla Contreras | May 2020 | A1 |
Number | Date | Country |
---|---|---|
1167754 | Jan 2002 | EP |
2963286 | Jan 2016 | EP |
2987999 | Feb 2016 | EP |
Entry |
---|
European Search Report, dated Aug. 31, 2020 for EP Application No. 20168025.3. |
Number | Date | Country | |
---|---|---|---|
20200318496 A1 | Oct 2020 | US |