This invention generally relates to down hole tools, specifically to underreamers, section mills, casing cutters, casing scrapers and drill string centralizers.
Most conventional underreamers, section mills, casing cutters, casing scrapers and drill string centralizers open via pump pressure and compression spring which actuate blades to an outward position longitudinally from the drill string. This only allows a limited small number of blades to be used and then only a limited amount of cutting surface is available to ream, cut, mill, scrape, or centralize. The present invention can be used in different forms as an underreamer, section mill, casing cutter, casing scraper or drill string centralizer but will be hereinafter collectively referred to as Underreamer. The present invention Underreamer provides for one or more turbines and rotor to actuate blades axially from the drill string, which allows more blades to be used to more effectively centralize the tool. The Underreamer also enables the blades to be larger in height than conventional tools to provide more surface area to be worn away or used which significantly increases the available time to ream, mill or cut without removing or tripping the drill string and replacing or refurbishing the tool. The Underreamer can be used with normal fluid circulation down through the drill pipe and returned to the surface via the annulus, or unlike most conventional tools can also be reverse circulated down the annulus and back to the surface via the inside of the drill string. Reverse circulation is necessary in large diameter or extended length bore holes where a large borehole volume cannot be continuously pumped clear with normal circulation due to available pumping equipment or reservoir pressures unable to sustain the pressure. An additional feature of the tool is its strength and compact length relative to conventional tools. One of the benefits to compactness is that logging or directional drilling tools or other equipment can be located closer to the leading drill bit for more accurate information. The Underreamer also has the advantage of being able to work while advancing or retreating.
Representative patents are U.S. Pat. No. 7,036,611 to Steven R. Radford, et al. and 7,650,951 to Hall et al.
The above and other advantages and features will become more readily appreciated and understood from a consideration of the following detailed description of different embodiments when taken together with the accompanying drawings in which:
Referring to the drawings, there is illustrated in
The Underreamer has one or more blades 10 for hole enlargement cutting (e.g. rock or cement), or milling (e.g. casing or pipe), or cutting a piece of casing or pipe into two pieces, or centralizing a drill string in a bore. The blades 10 can be tipped or profiled with cutters 11 or other various hardened materials to prolong blade life. The six bladed Underreamer would have the advantage of keeping the Underreamer more centralized in the hole, especially in horizontal or deviated drilling where the tendency is for the drill string to key seat against the hole wall and become stuck. Another embodiment of the Underreamer is shown in
Above and below the blade 10 area there are two sets of cylindrical plates. The first set of inner cylindrical plates 16 are set immediately above and below the blades 10 to retain the blades 10, blade wire lines 12 and tension springs 13. A proper gap to allow blade 10 rotation is maintained by stop cylinder pins 14, gap cylinder pins 17 and blade sleeves 29. The cylindrical plates 16, 18 also have bolt holes 19 drilled through them to align the blade flange bolts 20. The cylindrical plates 16, 18 also have smaller bores 21 through them which deliver fluid to the blade 10 area. The gap cylinder pins 17, positioned close to the rotor 6, minimize cuttings or debris from accumulating against the rotor 6 or in the area where the blades 10 need to retract to close. The three bladed Underreamer shows an elongated steel block 22 in lieu of a gap cylinder pin 17 to fill the area next to the rotor 6. The gap cylinder pins 17 also provide for the proper gap or distance between the inner cylindrical plates 16 so that the blades 10 are not squeezed but are allowed to rotate.
The outer cylindrical plates 18 above and below the inner cylindrical plates 16 allows the insertion of the rotor springs 15 which rotate the rotor 6 back to its original blade 10 closed position when pumping is stopped. They also have bolt holes 19 to align the blade flange bolts 20. They also have smaller bores 21 to deliver fluid to the blade area.
A blade flange bolt 20 for each blade 10 runs through the top and bottom connection flanges. These blade flange bolts 20 allow the blades 10 to rotate on an axis and keep the various parts of the Underreamer together. There are washers 24 and nuts 25 at each end of the blade flange bolts 20. In a three bladed Underreamer, three additional bolts on top and three additional bolts on bottom could be placed in positions where the six bladed Underreamer blade flange bolts are located, however they would be shorter so as to not go through the blade area (this would interfere with the three blades) but rather be threaded into the inner cylindrical plates 16 for added strength to keep the Underreamer together. As an alternative a threaded body section could be used in lieu of the bolt flange system. Gaskets can be placed between the inner and outer cylindrical plates 16, 18 and top and bottom threaded connection flanges 1, 2 to seal fluid from leaking. If desired a cylindrical cover could be used over the bolt nut areas, which could be kept in place by set crews or other means to prevent cutting or debris from filling the open area or to prevent catching borehole irregularities or material when tripping in or out of the borehole.
When the blades 10 become worn from use, they can be easily removed and rebuilt or replaced. The cutters 11 or other cutting material in or on the blades 10 can be brazed into pockets, pressed into place or some other attachment or retention method used. The cutters 11 can have enhanced brazed retention by cutting a ring groove 26 in each cutter pocket 27 just above the top of the cutter 11. When the brazing material 28 is heated it runs into the void between the cutter 11 and cutter pocket 27 and also fills the ring groove 26. When it fills the ring groove 26 it pools (overlaps) onto the cutter 11 top enhancing retention similar to a snap ring retention device. This is especially beneficial with polycrystalline diamond compact (a/k/a PDC) cutters 11 due to the fact that the diamond does not bond well to brazing material 28.
Another feature of the Underreamer is that combined operations such as section milling of casing could be done and then reaming of borehole could be done without tripping out the drill string to change tools. More than one Underreamer could be stacked in the drill string whereby one Underreamer with normal positioned rotor turbines 5, 7 and stator turbines 4, 8 could be used as a section mill to remove casing with normal circulation to open the blades and then without tripping the drill string to change tools the second Underreamer with reversed position rotor turbines 5, 7 and stator turbines 4, 8 could be opened with reverse circulation. In other words normal circulation would open the first Underreamer as a section mill tool to remove casing while the second Underreamer is closed, where after subsequent reverse circulation would close the first Underreamer and open the second Underreamer to ream.
It is therefore to be understood that even though numerous characteristics and advantages of the present embodiment have been set forth in the foregoing description, together with the details of the structure and function of the embodiment, the disclosure is illustrative only, and changes may be made within the principles of the embodiment to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed and reasonable equivalents thereof.
This application claims the benefit of provisional patent application Ser. No. 61/192,270 filed Sep. 17, 2008 by Alan L. Nackerud, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7036611 | Radford et al. | May 2006 | B2 |
7650951 | Hall et al. | Jan 2010 | B1 |
Number | Date | Country | |
---|---|---|---|
20100065264 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
61192270 | Sep 2008 | US |