This invention relates generally to machinery for screening paper-making pulp and, more particularly, to a screening apparatus having an enhanced rotor for promoting screening efficiency together with power conservation.
The Pulp and Paper Industry uses pressure screens to separate undesirable materials from usable fiber in the Industries' various processes. The typical pressure screen has a cylindrical screen plate with apertures in it. Inside of that is a central rotating element, the rotor, to provide pressure pulses that function to “clean” the surface of the screen plate and provide a motive force to move fibers through the plate. The screen rotors are characterized by the speed of rotation at the outermost point of the rotor (tip speed, usually expressed as meters/sec) and the frequency with which a rotor element passes a point on the screen (Hertz). The design of the rotor element controls the pulse generation function of the rotor.
Different types of pulp from different manufacturing processes require variations of the screening technique. For the purpose of this invention, the class of fibers produced by mechanical means will be considered. Examples of some of the processes which produce this type of fiber are stone groundwood, mechanical refiner groundwood, thermo-mechanical and chemi-thermo-mechanical pulps. In each of these processes the primary role of the screen is to separate the refined fibers from larger fiber bundles, called “shives” in the industry. The separated shives are recycled for additional refining. Some of the processes also desire separation of some of the longer fibers from the shorter fibers by the same mechanism of screening.
When screening mechanical pulps, the short flexible fibers that need to pass through the screen easily make the turn into the screen apertures. The longer less flexible fibers that require more refining action before they are ready to pass through the screen, need to be lifted away from the screen apertures and removed for further processing.
An example of current technology could be called a cage type rotor. A cage type rotor uses axial bars running close to the surface of the screen, and may have either notches in the trailing edge or small vanes on the surface of the element where its clearance with the screen is becoming greater. The notches or small vanes are angled toward the bottom, or the reject end of the screen. The element is typically called a “foil” and has a blunt leading edge and is triangular or square in cross section. These foil elements are suspended from a relatively narrow central core of the rotor, leaving the majority of the space inside the screen as void space, or space that is taken up by the fiber suspension. These rotors may also have a vertical plate either attached to the rotor arms, or extending from the central core and between the rotor arms extending to the foil elements.
Each foil member extends axially for the full length of the screen. The cage type rotor generates pulses, which sweep around the circumference over the full length of the screen with every revolution of the rotor. Such rotors consume excess power due to stirring action on the pulp residing inboard of the foil members. This power is wasted because it does not contribute sufficiently to the screening action.
To reduce the magnitude of the effects described above, many machines are made with closed rotors, that is, rotors having a full cylindrical surface on which bumps and depressions are directly attached without support arms to generate localized pressure pulsations. Depending upon their specific geometries, these may offer lower specific power consumption than cage rotors; and, because the bumps and depressions are distributed over the rotor surface, the pressure pulsations are distributed about the screen surface and do not concentrate alternating stresses along the aperture pattern
One improvement to the cage and closed type rotors provides a large diameter hub on which the hydrodynamic foils are each mounted on short support arms to reduce the volume of the screening chamber and to reduce specific power consumption. This configuration can also be used to control flow patterns within the screening zone of the screen body.
One of the objects of the invention is to provide a hydrodynamic device that more effectively lifts the fibers needing further processing away from the screen surface and controls the flow pattern generated within the area between the rotor hub and the screen cylinder, thus improving the ability of the screening apparatus to remove shives and long fibers.
This invention provides a rotor adapted for use in a hydrodynamic device comprising a cylindrical screen having a circumferentially continuous apertured zone. The rotor has an axis of rotation and includes a substantially cylindrical outer surface adjacent the cylindrical screen. The rotor further includes a plurality of sets of a plurality of adjacent vane members supported above a substantially cylindrical outer surface of a rotor by a plurality of brackets. The rotor has an axis of rotation and is mounted within and co-axial with the cylindrical screen to define an annular screening chamber between the rotor and the screen. The sets are equally spaced apart in a direction circumferential to the rotor axis, and the vane members extend the length of the screening chamber parallel to the rotor axis.
In one embodiment, two of the vane members are air foils, and the first air foil is spaced apart from the screen surface, and the second air foil is spaced apart from the screen surface but closer to the screen surface than the first air foil. There is also a third vane member, and the third vane member is spaced apart from the screen surface but closer to the screen surface than the second air foil. The third vane member is generally an obtuse triangle in shape, with a blunt leading edge in the direction of movement of the vane member into the pulp, with one side generally parallel to the screen surface, another side is rearward of pulp flow and is slightly angled relative to the screen surface, and the last side is forward of pulp flow and is angled relative to the screen surface.
The foregoing and other aspects will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing figures.
Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of the construction and the arrangements of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof. Further, it is to be understood that such terms as “forward”, “rearward”, “left”, “right”, “upward” and “downward”, etc., are words of convenience and are not to be construed as limiting terms.
Referring to
Rotor 36 has a closed top and a generally cylindrical surface 44. More particularly, the rotor has an axis of rotation and includes a substantially cylindrical outer surface 44 adjacent the cylindrical screen 40, and the screen 40 is a cylindrical screen having a circumferentially continuous apertured zone in the screen surface. The space outboard of the screen 40 contains inlet chamber 52 which is drained by accepts discharge 56. The rotor 36 is rotated by a prime mover 58 in a conventional manner.
In this embodiment, the rotor 36 further includes a collar 60 attached to the pulp feed end of the rotor 36, and the rotor 36 further includes a plurality of spaced apart solid rods 64 extending radially from the collar 60, with each rod 64 being angled from the radial direction in a direction away from the direction of rotor rotation. The spacing of the rods 64 is designed to inhibit the movement of large solid particles into the screening chamber and to protect the foils from possible damage.
As shown in
More particularly, the sets 80 of vane members are supported above the substantially cylindrical outer surface of the rotor 36 by a plurality of brackets 84, as shown in
The working sets 80 of vane members of the rotor 36 each include two or more separate lifting surfaces working in cooperation with each other. In the preferred embodiment, there are three. The first two vane members 90 and 94 are shaped like air foils, with a shape that imitates the cross section of a typical light aircraft wing. The first foil 90 is positioned farthest away from the screen surface at an angle of attack relative to that surface. It is also the shortest foil in chord dimension (the length from the nose to the tail of the foil in the flow direction). The second foil 94 trails the first foil 90 in the direction of rotation, is nearer the screen surface, and is also positioned at an angle of attack similar to the first foil 90. More specifically, the foil sections are asymmetrical, with a highly cambered shape, but not so high to cause significant flow separation. The negative pressure behind the foil shape pulls the pulp over the foil.
The third element or vane member 98 trails the second foil 94 in the direction of rotation, and is uniquely shaped to (1) provide a pronounced negative pulse at the screen surface; (2) direct flow emanating over the top surfaces of the two leading foils centripetally to mix with the pulp suspension at the surface of the center hub of the rotor 36; and (3) provide fluid flow patterns that induce mixing zones preceding the lead foil 90 and trailing the uniquely shaped third vane member 98. More particularly, the third vane member 98 is spaced apart from the screen surface but closer to the screen surface than the second air foil 94. The third vane member 98 is generally an obtuse triangle in shape, with a blunt leading edge in the direction of movement of the vane member into the pulp, as shown in
The existence of the air foils 90 and 94 is a departure from previous practice and controls fluid streamlines and flow patterns within the available void space to promote mixing. The range through which the invention operates is from 10-30 meters/second tip speed and with a vane group frequency range of 12.5-75 Hz. The invention rotor described is intended to run at between 10 and 28 meters/sec tip speed, and more preferably, 15 meters/sec tip speed and with a number of groups of elements to produce approximately 40 Hz. The clearance between the rotor tips and the screen surface is between 1 and 10 millimeters, and more preferably, 2 millimeters. The screening apparatus of this invention is usable with pulp consistencies of between 0.5 and 2.5%, and more preferably 1 to 1.8%, and most preferably, 1%.
In other embodiments (not shown), additional vane members or foils or other unique shapes can be used especially for different pulp types. These alternatives will embody the principles of lifting, mixing and pulse generation as described above.
Various other features and advantages of the invention will be apparent from the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3255883 | Nelson | Jun 1966 | A |
3953325 | Nelson | Apr 1976 | A |
4067800 | Young | Jan 1978 | A |
4097374 | Young | Jun 1978 | A |
4193865 | Aario | Mar 1980 | A |
4234417 | Gauld et al. | Nov 1980 | A |
4383918 | Chupka et al. | May 1983 | A |
4396502 | Justus | Aug 1983 | A |
4676903 | Lampenius et al. | Jun 1987 | A |
4744894 | Gauld | May 1988 | A |
4836915 | Frejborg | Jun 1989 | A |
4894147 | Rajala | Jan 1990 | A |
4919797 | Chupka et al. | Apr 1990 | A |
5176261 | Holz | Jan 1993 | A |
5383616 | Svaighert | Jan 1995 | A |
5547083 | Alajaaski et al. | Aug 1996 | A |
5601690 | Gauld et al. | Feb 1997 | A |
5645724 | Lamort | Jul 1997 | A |
6010012 | Gero | Jan 2000 | A |
6138836 | Valli | Oct 2000 | A |
6193073 | Chupka et al. | Feb 2001 | B1 |
6241102 | Lindberg et al. | Jun 2001 | B1 |
6571957 | Doelle et al. | Jun 2003 | B1 |
6588599 | Gscheider et al. | Jul 2003 | B2 |
20010011641 | Fukudome et al. | Aug 2001 | A1 |
20040108254 | Olson et al. | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050045530 A1 | Mar 2005 | US |