This specification relates to rotor blade assemblies, for example, assemblies of main rotor blades or other rotor blades, of a rotorcraft.
Rotorcrafts such as helicopters include rotor blades, for example, main rotor blades and tail rotor blades. A conventional rotorcraft rotor blade derives a vast majority of its strength and stiffness from an internal torque tube, often referred to as a spar or D-spar. The remaining volume within a rotor blade is occupied, in part, by a core made of a material such as honeycomb core. An upper skin portion and a lower skin portion are adhesively bonded to the spar and core. In such a conventional rotor blade, skins are members whose curvature creates aerodynamic loads as the outer contour interacts with fluid. Such skins are thin and serve as aerodynamic fairings that provide a proportionally small amount of the load carrying capability of the rotor blade.
This specification describes technologies relating to rotorcraft rotor blade assemblies. Some examples of the rotorcraft rotor blade assemblies described here can include a stub spar that spans less than a full span of the rotor blade. Some examples of the rotorcraft rotor blade assemblies described here can include thick skins Some examples of the rotorcraft rotor blade assemblies described here can include combinations of a stub spar and thick skins
Certain aspects of the subject matter described here can be implemented as a rotorcraft rotor blade assembly. The rotorcraft rotor blade assembly includes an upper skin portion and a lower skin portion. The upper skin portion extends substantially a full span of the rotor blade assembly. The lower skin portion extends substantially a full span of the rotor blade assembly. Each of the upper skin portion and the lower skin portion is configured to carry at least substantially 30% of rotor blade assembly loads.
This, and other aspects, can include one or more of the following features. Each of the upper skin portion and the lower skin portion is configured to carry at least substantially 30% of rotor blade assembly loads by less than substantially 50% of the full span of the rotor blade assembly. Each of the upper skin portion and the lower skin portion tapers from an inboard end of the rotor blade assembly towards the outboard end. A thickness of each of the upper skin portion and the lower skin portion at an inboard end of the rotor blade assembly is about ten times a thickness of each of the upper skin portion and the lower skin portion at an outboard end of the rotor blade assembly. To carry at least substantially 30% of rotor blade assembly loads, each of the upper skin portion and the lower skin portion includes composite material fibers oriented to carry torsional rotor blade assembly loads and centrifugal rotor blade assembly loads. The rotor blade assembly excludes a spar. Alternatively, the rotor blade assembly includes a stub spar which extends less than a full span of the rotor blade assembly. The stub spar extends up to 50% of the full span of the rotor blade assembly. The stub spar is positioned at an inboard end of the rotor blade assembly. The stub spar tapers as the stub spar extends away from the inboard end of the rotor blade assembly. A ratio of a quantity of upper skin portion material and lower skin portion material to a quantity of stub spar material at the inboard end is about 60:40. The ratio increases along the full span of the rotor blade assembly from the inboard end to the outboard end.
Certain aspects of the subject matter described here can be implemented as a method of manufacturing a rotor blade assembly. An upper skin portion is formed to extend substantially a full span of the rotor blade assembly. A lower skin portion is formed to extend substantially the full span of the rotor blade assembly. Each of the upper skin portion and the lower skin portion includes composite material to carry at least substantially 30% of rotor blade assembly loads. The upper skin portion is attached to the lower skin portion.
This, and other aspects, can include one or more of the following features. To form the upper skin portion and the lower skin portion, composite material to carry at least substantially 30% of rotor blade assembly loads by less than substantially 50% of the full span of the rotor blade assembly can be included in each of the upper skin portion and the lower skin portion. Each of the upper skin portion and the lower skin portion can be formed to taper from an inboard end of the rotor blade assembly towards the outboard end. Each of the upper skin portion and the lower skin portion is formed such that a thickness of each of the upper skin portion and the lower skin portion at an inboard end of the rotor blade assembly is about ten times a thickness of each of the upper skin portion and the lower skin portion at an outboard end of the rotor blade assembly. A stub spar is positioned between the upper skin portion and the lower skin portion. The stub spar extends less than a full span of the rotor blade assembly. The upper skin portion and the lower skin portion are attached to the stub spar. The stub spar extends up to 50% of the full span of the rotor blade assembly. The stub spar is formed to taper as the stub spar extends away from the inboard end of the rotor blade assembly. A ratio of a quantity of upper skin portion material and lower skin portion material to a quantity of stub spar material at the inboard end is about 60:40. The ratio increases along the full span of the rotor blade assembly from the inboard end to the outboard end.
The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
A conventional rotorcraft rotor blade derives a vast majority of its strength and stiffness from an internal torque tube, often referred to as a spar or D-spar. The remaining volume within a rotor blade is occupied, in part, by a core made of a material such as honeycomb core. An upper skin portion and a lower skin portion are adhesively bonded to the spar and core. In such a conventional rotor blade, skins are members whose curvature create aerodynamic loads as the outer contour interacts with fluid. Such skins are thin and serve as aerodynamic fairings that provide little, if any, structural stiffness to the rotor blade.
A rotor blade can include different types of material, for example, centrifugal material, torque material, shear material or other material. Centrifugal material can include, for example, composite material (such as fibers or other composite material) aligned substantially span-wise on the span of the rotor blade and configured to carry centrifugal loads on the rotor blade. Torque material can include, for example, composite material (such as fibers or other composite material) torsionally wound (for example, around the spar or around the skin or both), along the span of the blade. Shear material can include, for example, composite material (such as fibers or other composite material) which serves to capture and direct energy from outboard discrete elements, for example, abrasion strip, trailing edge or other elements, toward the blade attach bolt hole locations near the inboard end where all blade loads resolve. The shear material can include a combination of dominantly torque material and some centrifugal material or chord-wise material (or both).
This application describes alternative rotor blade assemblies in which the skins carry a significantly greater portion of the loads compared to the conventional rotor blade.
Thus, this application describes a rotor blade assembly and methods of manufacturing the rotor blade assembly by which the total load carried mostly by the spar of a conventional rotor blade is now split into constituent loads (for example, centrifugal loads, torsional loads, shearing loads), each of which is partially carried by the spar and the skins. As described below, the spar of the alternative rotor blade assembly can, consequently, be thinner than and manufactured using lesser material compared to the spar of the conventional rotor blade. Because complexity and cost of manufacture increases exponentially with thickness, the alternative rotor blade assembly can be easier and cheaper to manufacture compared to the conventional rotor blade. For example, a spar that has half the thickness of a spar of the conventional rotor blade assembly may cost one-quarter or one-sixteenth the cost of the spar of the conventional rotor blade. Disassembling and inspecting the alternative rotor blade assembly can also be simplified relative to the conventional rotor blade.
I. Rotor Blade Assembly Including a Stub Spar
Near the middle of the full span of the assembly 100 can be, for example, 50% of the full span of the assembly 100 or substantially 50% of the full span of the assembly 100. Having the stub spar 102 span substantially 50% of the full span of the assembly 100 can include having the stub spar 102 extend between 10% and less than 50% (for example, substantially one-tenth to one-third) of the full span of the assembly 100. In general, a shorter stub spar can be easier and cheaper to manufacture relative to a longer stub spar. Depending on a length of the stub spar 102, a quantity of material (e.g., torque material, centrifugal material, shear material or other material) of the stub spar 102 can vary. For example, a shorter stub spar can have more material than a comparatively longer stub spar. Alternatively, the shorter stub spar can have substantially the same quantity of material as a comparatively longer stub spar, and can consequently be denser than the longer stub spar.
The stub spar 102 is positioned at an inboard end 108 of the assembly 100. In some implementations, the stub spar can have a substantially constant thickness as the stub spar extends away from the inboard end of the blade assembly. the stub spar 102 tapers as the stub spar 102 extends away from the inboard end 108 of the blade assembly. A ratio of a quantity of material in the upper skin portion 102 and material in the lower skin portion 104 to a quantity of material in the stub spar 102 at the inboard end 108 can be about 60:40 (or range between 55:45 and 65:35). As the stub spar 102 tapers away from the inboard end 108 towards the outboard end 110, the ratio of the quantity of material in the upper skin portion 102 to the quantity of material in the stub spar 102 and the ratio of the quantity of material in the lower skin portion 104 to the quantity of material in the stub spar 102 increases. At the outboard end of the stub spar 102, the ratio can be about 80:20 (or in the range of 75:25 to 85:15). At the outboard end 110 of the assembly 100, the ratio is 100:0 because the stub spar 102 does not extend a full span of the assembly 100. In some implementations, the outboard end of the stub spar 102 can include between one and three plies of material. Alternative implementations of the outboard end of the stub spar can have different number of plies based on the design requirements of the stub spar.
In addition, at any cross-section along the stub spar 102, a percentage of torque material in the stub spar 102 can be greater than a percentage of torque material in either the upper skin portion 104 or the lower skin portion 106. Similarly, at any cross-section along the stub spar 102, a percentage of centrifugal material in the stub spar 102 can be less than a percentage of centrifugal material in either the upper skin portion 104 or the lower skin portion 106. For example, at any cross-section along the stub spar 102, substantially 10% (or a range of 5% to 15%) of the centrifugal material is in the stub spar 102 and the remainder of the centrifugal material is distributed between the upper skin portion 104 and the lower skin portion 106. Similarly, at any cross-section along the stub spar 102, substantially 90% (or a range of 85% to 95%) of the torque material is in the stub spar 102 and the remainder of the torque material is distributed between the upper skin portion 104 and the lower skin portion 106.
At locations in which the stub spar 102 is thicker than the upper skin portion 104 or the lower skin portion 106, the stub spar 102 can include more torque material (for example, torsional windings of composite fibers around a core) compared to the upper skin portion 104 or the lower skin portion 106. At locations in which the upper skin portion 104 or the lower skin portion 106 is thicker than the stub spar 102, the upper skin portion 104 or the lower skin portion 106 can include more centrifugal material (for example, composite fibers aligned substantially chord-wise on the span of the assembly 100). Alternatively or in addition, the stub spar 102 can be made thicker than the upper skin portion 104 or the lower skin portion 106 at a location by increasing a quantity of centrifugal material and torque material in the stub spar 102 at the location. Similarly, the upper skin portion 104 or the lower skin portion 106 can be made thicker than the stub spar 102 at a location by increasing a quantity of centrifugal material and torque material in the upper skin portion 104 or the lower skin portion 106 at the location.
In some implementations, the stub spar 102 can include only torque material and can exclude any centrifugal material. In such implementations, the stub spar 102 can include shear material. In some implementations, the stub spar 102 can include only shear material and can exclude any torque material or centrifugal material. In some implementations, the stub spar 102 can include filler material.
In some implementations, the assembly 100 can include an abrasion strip assembly 112, a tuning weight 114 and a weight pocket 116 or any number of details required for various uses of the blade. The stub spar can be made of one of many types of constructions, for example, using only fabric plies, any number of lay ups, a multi-axis weave fabric or sock, or other constructions. The stub spar can include a scupper or a drain hole (or both) to prevent water from entering the blade. The abrasion strip assembly 112 can taper off after a sufficient overlap with the stub spar to create an abrasion strip assembly 112 that is easy to form. The abrasion strip assembly 112 can have a grounding tab integral to the assembly 112 which can run a full length inboard of the taper to cover the assembly 100.
In some implementations, the upper skin portion and the lower skin portion can be attached to the stub spar by bonding or curing or both. For example, either the stub spar or the upper skin portion or the lower skin portion (or any two or all of them) can be pre-cured before positioning the stub spar between the upper skin portion and the lower skin portion. Alternatively, each of the stub spar, the upper skin portion and the lower skin portion (or any two or all of them) can be uncured. To attach the upper skin portion and the lower skin portion to the stub spar, the upper skin portion, the lower skin portion and the stub spar can be bonded after attaching the upper skin portion and the lower skin portion to the stub spar. In some implementations, the upper skin portion and the lower skin portion can be attached to each other and the stub spar can then be attached to, for example, inserted into a cavity to snap fit with, the joined upper and lower skin portions.
II. Rotor Blade Assembly Including Thick Skins:
In some implementations, each of the upper skin portion 804 and the lower skin portion 806 is configured to carry at least substantially 30% of the rotor blade assembly loads. As described above, the skins of a conventional rotor blade serve more as aerodynamic fairings than structural members. A percentage of the loads that such skins of the conventional rotor blade are configured to carry is very small, for example, 5%-10% of the total blade loads. The skin portions of the rotor blade assembly 800, in contrast, are configured to carry comparatively greater loads, for example, substantially 20%, 25%, 30%, 35% or more of the rotor blade assembly 800. For example, each of the upper skin portion 804 and the lower skin portion 806 is configured to carry at least substantially 30% of the rotor blade assembly loads by less than substantially one-half of the full span of the rotor blade assembly 800. Substantially one-half of the full span of the rotor blade assembly 800 can include, for example, exactly one-half or less than one-half, for example, 47%, 45%, 40%, 35% of the full span.
Each of the upper skin portion 804 and the lower skin portion 806 can be configured to carry greater loads (relative to a conventional rotor blade) by increasing a quantity of material in the upper skin portion 804 and the lower skin portion 806 compared to corresponding skins in the conventional rotor blade assembly. For example, a quantity of centrifugal material or torque material (or both) in the upper skin portion 804 can be greater than a corresponding quantity in a conventional rotor blade. Similarly, a quantity of centrifugal material or torque material (or both) in the lower skin portion 806 can be greater than a corresponding quantity in a conventional rotor blade.
In some implementations, each of the upper skin portion 804 and the lower skin portion 806 tapers from an inboard end 808 of the assembly 800 towards an outboard end 810 of the assembly 800. A thickness of each of the upper skin portion 804 and the lower skin portion 806 at the inboard end 808 can be greater than a thickness of each of the upper skin portion 804 and the lower skin portion 806 by a factor, for example, of about four, six, eight, ten or greater. For example, the outboard portion of the upper skin portion 804 or the lower skin portion 806 (or both) can each have about 3-4 plies of material. The inboard portion of the upper skin portion 804 or the lower skin portion 806 (or both) can each have about 30-40 plies of material.
In some implementations, the rotor blade assembly 800 can exclude a stub spar of any length. Alternative implementations of a rotor blade assembly having an upper skin portion and a lower skin portion similar in structure and function to the upper skin portion 804 and the lower skin portion 806, respectively, can include a stub spar that is substantially similar in structure and function to the stub spar 102 described above. In some implementations, the assembly 800 can include an abrasion strip assembly 812, a tuning weight 814 and a weight pocket 816.
III. Methods of Manufacturing Rotor Blade Assemblies
As described above, the spar of a conventional rotor blade is used to support and react dominant structural forces of the blade while the skin creates the aerodynamic surfaces. These designs consistently have issues creating a repeatable bond between the skins and the rigid details within. These defects, which are caused by issues associated with this bond, are sometimes called skin voids and represent a significant portion of the defects in rotor blades. One technique to manufacture a rotor blade assembly with thick skins can include stacking up composite material. Doing so can cause variations in the final surface contour proportional to a thickness of the laminate due to variations in bulk and location. To address this bulk factor concern, thick skins can be tooled on the outer mold line (OML), thereby pushing the variance to the inner mold line (IML). The internal details of the blade can then be made compliant to these surface variations resulting in high quality bonds as well as aerodynamically pleasing surfaces. Resin transfer molding (or other net volume techniques) have also been used to create high quality aerodynamic surfaces with predictable mating surfaces. These techniques process place structure in a net volume mold and fill the resulting space with resin. Inner mold line (IML) tooling can be cheaper than net molding parts but can still produce a highly repeatable and reliable mating surface, for example, by reducing the number of skin voids.
One technique to describe the rotor blade assemblies described here is to add an OML tooled stub spar and IML tooled upper and lower ski portions, which snap fit together. The stub spar can join the upper and lower skin portions. Since the adjoining surfaces are now the tooled surfaces, variations in thicknesses are decreased. The stub spar creates a highly repeatable process for an IML tooled blade. The stub spar can be optimized in the lug region such that it is (1) designed for manufacturing (DFM), and (2) structurally designed for the mechanical performance of both the lug and the spar. That is, the stub spar can be designed to provide the correct stiffness as well as handle loads (i.e., stresses and strains) for each load case adequately.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, the blade assembly described here can be implemented to manufacture blade assemblies for unmanned aerial vehicles (UAVs), sail plains and other devices that implement thin, highly loaded, high aspect ratio structures which attach at a single root joint. In some implementations, the stub spar can be a stub clip. As an alternative to incorporating some of the spar and shear material in the stub spar, an outer mold line (OML) tooled clip can be used to tie the two halves of the blade assembly together.