BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
a is a side elevation view of a round baler of the prior art;
FIG. 1
b is a side elevation view of a round baler of the prior art showing a limitation in said prior art;
FIG. 2
a is a side elevation view of the belt tensioner of the present invention;
FIG. 2
b is a perspective view of the belt tensioner;
FIG. 3 is a side elevation view of a round baler showing a first embodiment of the belt tensioner in its starting position;
FIG. 4 is a side elevation view of a round baler showing the first embodiment of the belt tensioner in its bale-forming position;
FIG. 5 is a side elevation view of a round baler showing a formed bale and the first embodiment of the belt tensioner in a position to provide room for the bale;
FIG. 6 is a side elevation view of a round baler showing a second embodiment of the belt tensioner in its starting position;
FIG. 7 is a side elevation view of a round baler showing a third embodiment of the belt tensioner in its starting position;
FIG. 8 is a side elevation view of a round baler showing a fourth embodiment of the belt tensioner in its starting position;
FIG. 9 is a side elevation view of a round baler showing the fourth embodiment of the belt tensioner in its bale-forming position;
FIG. 10 is a side elevation view of a round baler showing a formed bale and the fourth embodiment of the belt tensioner in a position to provide room for the bale; and
FIG. 11 is a side elevation view of a round baler being towed by an agricultural tractor.
DETAILED DESCRIPTION OF THE INVENTION
With reference now to the various figures in which identical elements are numbered identically throughout, a description of various exemplary aspects of the present invention will now be provided. The preferred embodiments are shown in the drawings and described with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the embodiments disclosed. Any references, herein, to directions will be determined by facing in the direction of travel of the baler during normal operation.
The direction of travel when the baler is in operation, picking up crop material and forming a bale, is hereby defined as the forward direction, and is illustrated in FIG. 11 by an arrow above the tractor 1110. The opposite direction is hereby defined as the rearward direction, also depicted in FIG. 11. The baler and components, then, have a forward end or side and a rearward end or side. These definitions will be used throughout this specification, including the claims.
The first embodiment of the split belt tensioner 210 of the present invention is illustrated in FIG. 2 in various orientations, and installed in a baler 100 in FIGS. 3-4. A forward member 220 of the split belt tensioner 210 is pivotally attached at a first pivotal axis 230 identical to the prior art. Articulation about this first pivot axis 230 is by an actuator, preferably a hydraulic cylinder (not shown) as per the prior art.
A rearward member 240 of the split belt tensioner 210 is pivotally attached at a second pivotal axis 250 to the forward member 220 of the split belt tensioner 210. When the bale forming chamber 310 is void of crop material, the rearward member 240 of the split belt tensioner 210 is in a lowered position, as shown in FIG. 3. This lowered position is achieved by pivoting the rearward member 240 of the split belt tensioner 210 about the second pivot axis 250 under the force of gravity.
A plurality of baler belts 120 all bear on and are guided by idler rollers 320, rotationally attached to the reward member. The rollers 320 define the shape of the top of the bale forming region inside the belts 120. In particular, when the rearward member 240 is in its lower position, the rollers 320 lower the top of the initial bale forming region and force the belts at the rear of the bale forming region into a more horizontal orientation than if the rearward member 240 remains in its upper position. That is, the angles of elevation of the belts below the rearmost roller 320 decrease. Comparing FIG. 3 with FIG. 4 clearly shows the effect of this rearward member 240 in its lower position (FIG. 3) and its upper position (FIG. 4).
As can be seen, again by comparing FIGS. 3 and 4, once the crop 140 has successfully begun to roll into a forming bale 410 (FIG. 4), the rearward member 240 of the split belt tensioner 210 returns to a place adjacent to the forward member 220 of the split belt tensioner 210. After the rearward member 240 returns adjacent to the forward member 220, the split belt tensioner 210 functions as the solid belt tensioner 110 of the prior art. As with the solid belt tensioner 110 of the prior art, as the bale grows, the entire assembly of the split belt tensioner 210 rotates counterclockwise (according to the orientation of the views in FIGS. 3 and 4) as a unit about the pivotal axis 230.
A large, round baler with a fully, or nearly fully, formed bale 410 is shown in FIG. 5. The split belt tensioner 210 has pivoted as a unit about the pivotal axis 230 to make room for the growing bale 410 and, at the same time, to allow the belt 120 to wrap around the bale 410.
A second embodiment of a split belt tensioner 610 is illustrated in FIG. 6. In this embodiment, the rearward member 640 comprises an idler roller 630 and the forward member 620 comprises a pair of idler rollers 650. As before, the rearward member 640 of the split belt tensioner 610 is pivotally attached at a second pivotal axis 250 to the forward member 620 of the split belt tensioner 610. Also as with the first embodiment, when the rearward member 640 is in its lower position, the idler roller 630 forces the belts at the rear of the bale forming region 310 into a more horizontal orientation than if the rearward member 640 remains in its upper position. Again, the angles of elevation of the belts below the idler roller 620 decrease, providing the force needed to bring the crop material 140 forward to begin to roll into a bale 410. Shortly after the bale 410 begins to form, the rearward member 640 rotates counterclockwise about its pivotal axis 250 to be adjacent to the forward member 620. As the bale 410 forms, the rearward member 640 remains stationary relative to the forward member 620, to the two members 620, 640 operate as a unit like the prior art tensioner 110.
The rearmost upper roller 660 has been repositioned for this second embodiment compared to the first embodiment to reduce the chance the loops of belt 630, 640 come into contact with one another, especially when the rearward member 640 is in its lower position.
A third embodiment of the split belt tensioner 710 represents a modification to the second embodiment of the split belt tensioner 610, and is shown in FIG. 7.
In this third embodiment, a third idler roller 720 has been added to the forward member 725. The third idler roller 720 is provided to maintain a separation between the loops 630, 640 of the belt above the forward member 725. The possible need for this is clearly shown by comparing these belt loops 630, 640 in FIG. 6 to those in FIG. 7.
A fourth embodiment of the split belt tensioner 810 is shown in FIG. 8. A main member 820 pivots on the axis 230 as usual. A forward roller 830, providing take-up of the belt 120, is rotatably affixed to a pivot arm 840, which pivots about an axis 850 relative to the main member 820. A guide slot 860 provides positive stops at the forward and rearward ends of travel of the pivot arm 840.
In its extreme forward position, the forward roller 830 takes up less belt 120 length than it would if it was restricted to its extreme rearward position. Therefore, the split belt tensioner 810 is able to pivot about its axis 230 to a lower position because the forward roller 830 pivots with the pivot arm 840. Hence, the starting bale forming chamber is enhanced by providing the forward roller 830 with the ability to move forward and backward relative to the main member 820.
In FIG. 9, a bale 410 is beginning to form and the split belt tensioner 810 is beginning to rotate counterclockwise about its axis 230. The pivot arm 840 is also pivoting about its axis 850, keeping proper tension on the belts 120.
In FIG. 10, a fully formed bale 410 is shown. The split belt tensioner 810 is pivoted to an extreme upper position, while the pivot arm 840 has pivoted to the rearward stop point of the guide slot 860, again taking up the proper amount of belt 120 length.
In FIG. 11, a large, round baler 100 of the present invention is shown being towed by the agricultural tractor 1110 in the normal fashion.
The above embodiments are the preferred embodiments, but this invention is not limited thereto. It is, therefore, apparent that many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.