The present invention relates to a routine-based cart system operating by recognizing specific behaviors of a user and a cart control method using the cart system, more specifically, to a routine-based cart system operating by recognizing specific behaviors of a user and a cart control method using the cart system that are capable of recognizing and analyzing the specific behaviors of the user carrying a remote controller, if the specific behaviors corresponding to the specific behaviors of the user stored in a cart are done, to automatically stop the cart, without any use of the remote controller by the user.
Generally, a transportation vehicle for transporting a golf bag and other golf equipment around the golf course is called a golf cart, and the golf cart is classified into a manual golf cart directly pushed and driven by an operator and an unmanned golf cart performing autonomous driving, while tracking a person.
In conventional technologies, further, the golf cart recognizes a remote controller carried with a user through a tag and operates behind the user, while having a given distance within a trackable range from the user. If the golf cart recognizes the user within a safety zone (e.g., 1.5 m), it stops, and so as to perform the tracking driving, a given button of the cart is pressed by the user to directly instruct re-pairing, thereby causing many inconveniences in use. In the case of a round of golf for four players, the players who are not used to controlling the cart should have access to the cart again, so that the golf game cannot be performed smoothly due to the increase of foot traffic unnecessary.
Further, a golf cart system capable of performing autonomous driving, based on accurate position information, which is disclosed in Korea Patent No. 10-2038317 as filed by the same applicant as the invention, includes: a cart body automatically driven by a control module 200; the control module having a collision prevention sensor for recognizing an object to prevent the collision against the object, a GPS sensor for providing the position information of the cart body, a slope sensor for recognizing and controlling a slope, a memory for storing field information of a running area and a running limiting area of a golf course, a tracker for tracking a terminal in real time, a controller for receiving the position information of the terminal, calculating the distance from the terminal on the basis of the field information of the golf course stored in the memory, and controlling the movement of the cart body, a communication module for performing the transmission and reception to and from the terminal, and a distance measurer for measuring the distance between the control module and the terminal; a server for transmitting the field information of the golf course to the memory; and the terminal for selectively or in real time interacting with the control module, wherein the cart body has three or more fixing nodes spaced apart from one another on one side thereof and connected to the control module, one of the fixing nodes becoming a standard of a coordinate, and the distance measurer sequentially calculates the distances of the respective fixing nodes from the terminal, substitutes the calculated distances for trilateration algorithm, obtains the coordinate values of x and u of the terminal, determines the coordinate values of the x and u as the position values of the terminal, calculates the distance and angle between the fixing node as the standard and the position values of the terminal, and transmits the calculated result to the control module to allow the cart body to perform autonomous driving. If the terminal transmits ping, the control module receives pong, and if the number of fixing nodes checked after the pong timeout of 100 ms is less than three, the ping is transmitted again, whereas if the number of fixing nodes checked is greater than three, the conversion into a round-robin state is made. In the round-robin state, the coordinate values or distances between the terminal and the respective fixing nodes are calculated sequentially, and in this case, the terminal transmits poll to the control module and receives pollack from the control module. If there is no pollack reception with 10 ms after the poll transmission, time is out to re-start the round-robin state, and the terminal transmits range to the control module and receives range_report. If there is no range_report reception with 10 ms after the range transmission, time is out to re-start the round-robin state.
In the above-mentioned technology, while the terminal of the user is in real time tracked, an erroneous range in the position values of the terminal is minimized through the trilateration algorithm, thereby allowing the cart body to be autonomously driven accurately.
In the above-mentioned technology, in specific, after the golf cart has recognized the remote controller of the user, it receives the accurate position value of the remote controller and moves, while having the predetermined distance from the remote controller, so that the golf cart is driven behind the user, while always having the predetermined distance from the user, unless the user sends a stop signal to the golf cart.
However, if the user moves in a state where no stop command is issued to the golf cart during the round of golf, the golf cart in real time tracks the remote controller carried with the user according to the set distance (predetermined distance), thereby causing big and small safety accidents and many inconveniences during the round of golf.
While the golf cart is recognizing the remote controller carried with the user and being thus driven, having the predetermined distance from the user, if it is desired that the user moves to another place after accessing the golf cart to pick up a golf club, the user always must inconveniently press a button for operating the golf cart.
Accordingly, the present invention has been made in view of the above-mentioned problems occurring in the related art, and it is an object of the present invention to provide a routine-based cart system operating by recognizing specific behaviors of a user and a cart control method using the cart system that are capable of allowing a cart to interact with a remote controller carried with the user, recognize the remote controller, and automatically operate, while having a predetermined distance from the user, wherein to do this, the specific behaviors of the user carrying the remote controller are recognized and analyzed with the algorithms corresponding to the specific behaviors that are built in the interior of the cart, and the cart automatically stops, without any use of the remote controller by the user, thereby providing many conveniences during a round of golf.
To accomplish the above-mentioned objects, a routine-based cart system operating by recognizing specific behaviors of a user, the cart system being configured to track one or more remote controllers (100) carried with a user in real time, recognize the user, and perform autonomous driving behind the user, while keeping a predetermined distance from the user, the cart system including:
The specific behaviors may be behaviors of the user made by using his or her body or a tool, and the controller (240) operates the cart (200) if the first IMU sensor (110) recognizes the user's specific behavior and transmits the recognized signal to the controller (240) in a state where the cart (200) stops.
The cart (200) may further include a second IMU sensor (250) having the same function as the first IMU sensor (110) and transmitting information of the state of a road surface along which the cart (200) moves to the controller (240) and a second memory (260) having the same function as the first memory (130), so that if the first IMU sensor (110) does not recognize the user's specific behaviors for a given period of time, the second IMU sensor (250) recognizes the user's specific behaviors and transmits the recognized information to the controller (240).
The time required to recognize the user's specific behavior by the first IMU sensor (110) may be 0.1 to 0.3 seconds, and the recognition time of the first IMU sensor (110) and the distance of the cart (200) from the user are selectively set by the controller (240).
The remote controller (100) may include a mode controller (150) having a tracking driving mode (151) in which the cart (200) tracks the user in real time and thus performs the autonomous driving behind the user, while keeping the predetermined distance from the user, a standby mode (153) in which the cart (200) is kept at a standby state behind the user, and a control mode (155) in which the cart (200) is selectively set automatically or manually.
The cart (200) may include an alarm (270) adapted to generate an alarm sound if the distance of the cart (200) from the remote controller (100) or the user is greater than 1 m in a state where the cart (200) is in the standby mode (153) by means of the remote controller (100).
A cart control method using the routine-based cart system operating by recognizing the specific behaviors of the user according to the present invention may include: the storing step (S100) in which the one or more specific behaviors of the user are stored in the first memory (130) of the remote controller (100); the recognizing step (S200) in which the remote controller (100) and the cart (200) are connected wirelessly with each other to allow the cart (200) to operate through the recognition of the remote controller (100); the real time operating step (S300) in which after the cart (200) has recognized the remote controller (100) in the recognizing step (S200), the cart (200) operates in real time, while keeping the predetermined distance from the user behind the user, which is made through the distance measurer (230); the cart stopping step (S400) in which if the first IMU sensor (110) recognizes the user's one specific behavior, the cart (200) automatically stops by the control of the controller (240); and the cart re-starting step (S500) in which if the first IMU sensor (110) recognizes the user's another specific behavior after the cart stopping step (S400), the cart (200) automatically operates by the control of the controller (240).
In the cart stopping step (S400) and the cart re-starting step (S500), if the first IMU sensor (110) fails to recognize the user's specific behaviors within predetermined time, the second IMU sensor (250) may recognize the user's specific behaviors and transmit the recognized signals to the controller (240) so that the cart (200) stops or re-starts.
In this case, in the recognizing step (S200), the cart (200) may be driven through the recognition of the remote controller (100), while being set in any one of a tracking driving mode and a manual driving mode.
According to the present invention, the routine-based cart system operating by recognizing the specific behaviors of the user and the cart control method using the cart system are provided so that the original purpose of the cart system is achieved, and simultaneously, the cart performs the autonomous driving behind the user, while keeping the predetermined distance from the user. In this case, if the cart recognizes the user's specific behaviors stored in the remote controller or therein, the cart stops or re-starts, and accordingly, the cart autonomously stops or re-starts, without receiving any stop or re-start command signals from the user, thereby providing many conveniences in use. Further, if the cart becomes distant from the remote controller over the predetermined distance in a state where the cart is set in the standby mode, the alarm sound is generated to allow the user to recognize the location of the cart and the standby mode setting, so that the user handles such a situation well. Moreover, the IMU sensor and the memory are included in the remote controller and the cart, so that if the remote controller fails to recognize the user, the cart recognizes the user, thereby preventing the occurrence of malfunctions.
The present invention relates to a routine-based cart system operating by recognizing specific behaviors of a user and a cart control method using the cart system that are capable of recognizing and analyzing the specific behaviors of the user carrying a remote controller, if the specific behaviors corresponding to the specific behaviors of the user stored in a cart are done, to automatically stop the cart, without any use of the remote controller by the user.
Hereinafter, an explanation of desirable configuration and operation of the present invention will be given in detail with reference to
First, a routine-based cart system operating by recognizing specific behaviors of a user according to the present invention is configured to have one or more remote controllers 100 carried with the user and a cart 200 recognizing the user and thus performing autonomous driving behind the user, while keeping a predetermined distance from the user, so that the cart 200 performs wireless communication with the remote controllers 100 and stops or re-operates if the specific behaviors of the user are recognized, while being in real time autonomously driven behind the user according to the signals received from the remote controllers 100.
The remote controller 100 is carried with the user and includes a first Inertial Measurement Unit (IMU) sensor 110, a GPS sensor 120, a first memory 130, and a first communication module 140, as shown in
The first IMU sensor 110 recognizes one or more specific behaviors of the user that are stored in the first memory 130 and transmits the recognized information to a controller 240 of the cart 200. As a result, the controller 240 stops or re-starts the cart 20, based on the received information.
The first IMU sensor 110 consists of a single sensor or a plurality of sensors having different characteristics that are organically combined with one another to recognize the user's specific behaviors, and if the first IMU sensor 110 consists of the plurality of sensors, a degree of accuracy in recognizing the user's specific behaviors becomes high.
For example, the plurality of sensors include a sensor for detecting the user's motions, a sensor for detecting the user's body temperature, and a sensor for recognizing the user's voice, and the specific behaviors are recognized through data based on the information detected through the sensors, so that the recognized data is transmitted to the controller 240, thereby minimizing errors to thus allow the cart 200 to operate well, while being prevented from being malfunctioned.
The GPS sensor 120 is configured to provide the moving path and position of the cart 200, and to do this, it performs typical GPS functions. Through the GPS sensor 120, a distance measurer 230 of the cart 200 recognizes an accurate position of the cart 200, so that the cart 200 can perform autonomous driving, while keeping the predetermined distance from the user behind the user.
The first memory 130 is configured to have algorithms 131 corresponding to the specific behaviors, and to do this, it stores one or more specific behaviors stored by the user and provides a standard through which the first IMU sensor 110 recognizes the specific behaviors. As a result, if the first IMU sensor 110 recognizes the specific behaviors, the first memory 130 provides the standard through which it is determined whether the specific behaviors are behaviors for stopping or re-starting the cart 200 through the algorithms 131.
The first communication module 140 is configured to perform communication with a second communication module 210 of the cart 200, and to do this, it transmits signals after the first IMU sensor 110 has recognized the user's specific behaviors to the controller 240 of the cart 200. Typical communication technologies may be applied to the first communication module 140.
Further, the specific behaviors are behaviors of the user made by using his or her body or a tool. For example, if the user looks back in the state where the cart 200 recognizes the back of the user, such a behavior of the user is recognized as the behavior for stopping the cart 200, and if the user bows or raises his or her arms in the state where the cart 200 stops and thus recognizes the back of the user again, such a behavior of the user is recognized as the behavior for re-starting the cart 200, so that the cart 200 performs autonomous driving behind the user.
Further, the remote controller 100 includes a mode controller 150 having a tracking driving mode 151 in which the cart 200 tracks the user in real time and thus performs the autonomous driving behind the user, while keeping the predetermined distance from the user, a standby mode 153 in which the cart 200 is kept at a standby state behind the user, and a control mode 155 in which the cart 200 is selectively set automatically or manually, and accordingly, the mode as required is set according to the purpose of use.
In this case, the standby mode 153 means the standby state in which the cart 200 stops by the specific behavior of the user or by arbitrarily pressing a stop button by the user.
As shown in
The cart body is the same as a typical cart and includes driving means. Further, the cart body is configured to allow various loads to be located thereon and to have the second communication module 210, the distance measurer 230, and the controller 240 attached or fixed to the inside or outside thereof.
The driving means includes a pair of wheels spaced apart from each other by a given distance at the front side of the cart body, a pair of wheels spaced apart from each other by a given distance at the rear side of the cart body, and a drive motor connected through connection means to the respective wheels or one wheel to transmit power to the wheels, so that the cart body automatically moves in every direction, and further, the wheels located at the front or rear side of the cart body are converted in direction toward a left or right direction.
The cart body is the cart body typically used, and therefore, no additional explanation and illustration are provided.
Further, the cart body is made of steel or metal, thereby improving the durability thereof.
The second communication module 210 is mounted at one side of the inside or outside of the cart body to perform the communication with the first communication module 140, and the second communication module 210 has the same configuration as the first communication module 140. Therefore, no additional explanation of the second communication module 210 is given.
The distance measurer 230 serves to measure a distance from the user, and through the distance measured through the distance measurer 230, the cart 200 performs the autonomous driving behind the user, while keeping the predetermined distance from the user.
In this case, if a distance from the cart 200, the remote controller 100, or the user is selectively set through the controller 240 by the user, the set distance becomes the predetermined distance, and accordingly, the distance measurer 230 transmits the set information to the controller 240 so that the cart 200 operates according to the values before and after the predetermined distance value.
The controller 240 automatically controls the driving of the cart 200 and stops, if it receives the information of the recognized specific behavior from the first IMU sensor 110, driving the cart 200.
In specific, if the first IMU sensor 110 recognizes the user's specific behavior stored in the first memory 130 and transmits the recognized signal to the controller 240, the controller 240 stops driving the cart 200.
In this case, as shown in
If the first IMU sensor 110 and the first memory 130 of the remote controller 100 fail to recognize the user's specific behavior, the second IMU sensor 250 and the second memory 260 recognize the user's specific behavior and thus help the cart 200 operate without any problem.
In this case, the first priority in recognizing the user's specific behavior is the first IMU sensor 110, and if the first IMU sensor 110 fails to recognize the user's specific behavior, the second priority in recognizing the user's specific behavior is the second IMU sensor 250.
In this case, when the first IMU sensor 110 or the second IMU sensor 250 recognizes the user's specific behavior, it is determined whether the data pre-stored in the first memory 130 or the second memory 260 corresponds to the recognized specific behavior through the algorithm, and next, the first IMU sensor 110 or the second IMU sensor 250 transmits the determined signal to the controller 240. In this case, the first IMU sensor 110 transmits and receives signals to and from the first memory 130 as the first priority and recognizes the user's specific behavior, and if it does not receive any signal from the first memory 130, it transmits and receives signals to and from the second memory 130, recognizes the user's specific behavior, and transmits the signals to the controller 240. Further, the second IMU sensor 250 transmits and receives signals to and from the second memory 260 as the first priority and to and from the first memory 130 as the second priority and transmits the signals to the controller 240, and if necessary, the first IMU sensor 110 and the second IMU sensor 250 transmit signals to both of the first memory 130 and the second memory 260, irrespective of the priority, so that if the signals received back are the same as each other, the signals are transmitted to the controller 240.
According to the present invention, that is, the recognition of the specific behavior of the first and second IMU sensors 110 and 250 may be changed in various methods, and the first and second IMU sensors 110 and 250 receive the signals corresponding to the specific behaviors from both of the first memory 130 and the second memory 260 and transmit the received signals to the controller 240, so that a degree of accuracy in recognizing the user's specific behaviors becomes high.
In specific, if one of the first and second IMU sensors 110 and 250 or one of the first and second memories 130 and 260 is malfunctioned or does not work due to external reasons, only the other can operate, and in this case, further, the degree of accuracy in recognizing the user's specific behaviors becomes high.
In this case, the time required to recognize the user's specific behavior by the first IMU sensor 110 is 0.1 to 0.3 seconds, and if the time for recognition is exceeded, the user's specific behavior is recognized by the second IMU sensor 250.
In this case, the recognition time of the first IMU sensor 110 and the distance of the cart 200 from the user are selectively set by the controller 240, and various changes in the time and distance may be made according to the use purpose of the cart 200, thereby providing many conveniences of use.
Further, the cart 200 includes an alarm 270 adapted to generate an alarm sound if the distance of the cart 200 from the remote controller 100 or the user is greater than 1 m in a state where the cart 200 is in the standby mode 153 by means of the remote controller 100, and if the user moves without having any specific behavior in a state where the cart 200 stops so that the user mistakes the stopped cart 200 for the cart 200 being driven behind him or her or the cart 200 has a long distance from the user, accordingly, the alarm sound is generated from the alarm 270 and thus recognized by the user, thereby providing many conveniences in use.
Further, the cart 200 includes an image acquirer 280 for capturing images and photos of the user and surrounding environments around the user in real time to prevent the occurrence of various unexpected bad situations, and accordingly, the images and photos may be provided as materials utilized in the future. The cart 200 further includes a display 290 adapted to display the images acquired by the image acquirer 280 in real time.
The image acquirer 280 includes a general camera, and the display 290 includes a device through which an image is typically checkable.
As shown in
The storing step (S100) is the step in which one or more specific behaviors of the user are stored in the first memory 130 of the remote controller 100 by the user to thus produce data for automatically stopping or re-starting the cart 200 in the cart stopping step (S400) or the cart re-starting step (S500).
In specific, in the storing step (S100), data relating to the user's specific behaviors (gestures or behaviors using a tool) is stored in the first memory 130, and in this case, it is desirable that the specific behaviors be stored in the second memory 260 as well as the first memory 130.
The recognizing step (S200) is the step in which the remote controller 100 and the cart 200 are connected wirelessly with each other to allow the cart 200 to operate through the recognition of the remote controller 100. In this case, the cart 200 receives signals from one or more remote controllers 100 and operates smoothly.
In specific, two or more remote controllers 100 are simultaneously connected wirelessly with the cart 200, but the first remote controller 100 which is connected wirelessly with the cart 200 among the plurality of remote controllers 100 becomes a first priority so that the first remote controller 100 transmits and receives the signals to and from the cart 200. If the power of the remote controller 100 serving as the first priority is off, the remote controller 100, who becomes a second priority, is automatically connected wirelessly with the cart 200, so that no confusion may be made in the use of the cart 200.
In the recognizing step (S200), further, in the case where the cart 200 operates through the recognition of the remote controller 100, the cart 200 is set in any one of the tracking driving mode and the manual driving mode, so that the user selectively sets the mode corresponding to his or her current situation when the cart 200 is used.
The real time operating step (S300) is the step in which after the cart 200 has recognized the remote controller 100 in the recognizing step (S200), the cart 200 operates in real time, while keeping the predetermined distance from the user behind the user, which is made through the distance measurer 230.
The cart stopping step (S400) is the step in which while the cart 200 is being autonomously driven in real time behind the user through the recognition of the user, while keeping the predetermined distance from the user, if the first IMU sensor 110 recognizes the user's specific behavior, the cart 200 automatically stops by the control of the controller 240.
The cart re-starting step (S500) is the step in which if the first IMU sensor 110 recognizes the user's another specific behavior after the cart stopping step (S400), the cart 200 automatically operates by the control of the controller 240.
In this case, in the cart stopping step (S400) and the cart re-starting step (S500), if the first IMU sensor 110 fails to recognize the user's specific behaviors within predetermined time, the second IMU sensor 250 recognizes the user's specific behaviors and transmits the recognized signals to the controller 240 so that the cart 200 stops or re-starts.
Now, an explanation of a golf cart as the cart system of the present invention will be given. As shown in
Further, the cart system according to the present invention is configured to allow one or more specific behaviors that are most appropriate in the purpose and field where the cart is used to be stored in the first and second memories 130 and 260, thereby providing the conveniences in the use of the cart 200.
According to the present invention, the routine-based cart system operating by recognizing the specific behaviors of the user and the cart control method using the cart system are provided so that the original purpose of the cart system is achieved, and simultaneously, the cart performs the autonomous driving behind the user, while keeping the predetermined distance from the user. In this case, if the cart recognizes the user's specific behavior stored in the remote controller or therein, the cart stops or re-starts, and accordingly, the cart autonomously stops or re-starts, without receiving any stop or re-start command signals from the user, thereby providing many conveniences in use. Further, if the cart becomes distant from the remote controller over the predetermined distance in a state where the cart is set in the standby mode, the alarm sound is generated to allow the user to recognize the location of the cart and the standby mode setting, so that the user handles such a situation well. Moreover, the IMU sensor and the memory are included in the remote controller and the cart, so that if the remote controller fails to recognize the user, the cart recognizes the user, thereby preventing the occurrence of malfunctions.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0163117 | Nov 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2020/019411 | 12/30/2020 | WO |