Routing based on geolocation costs

Information

  • Patent Grant
  • 11909815
  • Patent Number
    11,909,815
  • Date Filed
    Monday, June 6, 2022
    2 years ago
  • Date Issued
    Tuesday, February 20, 2024
    9 months ago
Abstract
Some embodiments provide a method of implementing context-aware routing for a software-defined wide-area network, at an SD-WAN edge forwarding element (FE) located at a branch network connected to the SD-WAN. The method receives, from an SD-WAN controller, geolocation route weights for each of multiple cloud datacenters across which a set of application resources is distributed. The application resources are all reachable at a same virtual network address. For each of the cloud datacenters, the method installs a route for the virtual network address between the branch network and the cloud datacenter. The routes have different total costs based at least in part on the geolocation metrics received from the SD-WAN controller. The SD-WAN edge FE selects between the routes to establish connections to the set of application resources.
Description
BACKGROUND

Today, load balancers are deployed in cloud datacenters to ensure incoming connections are load balanced across multiple instances that provide a service within the cloud datacenters. Typically, each cloud datacenter has its own virtual network address, and based on geo-location, DNS will resolve to the nearest datacenter's virtual network address. However, this may cause uneven resource utilization across the datacenters (e.g., cloud datacenters of a multicloud), and can lead to latency in the service, and/or service unavailability while other cloud datacenters may be underutilized.


BRIEF SUMMARY

Some embodiments of the invention provide a method of implementing context-aware routing for a software-defined wide-area network (SD-WAN). The SD-WAN, in some embodiments, is formed by a set of SD-WAN edge forwarding elements (FEs) that connects branch networks (or other enterprise networks) to a set of cloud datacenters across which application resources are distributed, with the set of application resources reachable at each of these cloud datacenters using the same virtual network address (e.g., the same virtual IP address). The SD-WAN edge FEs at the branch networks install routes for the virtual network address with next hops at each of the cloud datacenters, with these routes having different costs based on various factors. When an SD-WAN edge FE receives a data message for a new connection directed to the virtual network address, the FE selects the route with the lowest total cost (i.e., the highest priority).


In this context, the SD-WAN edge FEs at the branch networks use a combination of route weights from a combination of sources to identify total costs for routing data messages directed to the virtual network address to the different cloud datacenters across which the application resources are distributed. These route weights, in some embodiments, include geolocation route weights based on physical distances between the branch networks and the cloud datacenters, datacenter route weights that are updated in real time indicating capacity of the different cloud datacenters, and latency route weights indicating latencies for sending data messages between the branch networks and the cloud datacenters.


The SD-WAN edge FEs located at the branch networks, in some embodiments, receive the geolocation route weights from an SD-WAN controller. The geolocation route weights correspond to physical distances between the branch networks and the cloud datacenters (e.g., such that larger physical distances are expressed as larger route weights). The SD-WAN controller generates these geolocation route weights as a matrix of route weights for each link between one of the branch networks and one of the cloud datacenters, such that each branch network SD-WAN edge FE receives the geolocation route weights for its link to each of the cloud datacenters.


In addition, the SD-WAN edge FEs at the branch networks receive datacenter route weights from the SD-WAN edge FEs at the cloud datacenters. These datacenter route weights express the capacity of the application resources at the datacenter. As described further below, the SD-WAN edge FEs at the datacenters receive information for computing the route weights from load balancers at the datacenter. In some embodiments, larger route weights indicate less current capacity at the datacenter (i.e., a higher total cost, or lower priority, for the corresponding route).


In some embodiments, the SD-WAN edge FE at the branch network also uses a latency route weight to calculate the total cost for each route, such that each total cost is a combination of the geolocation route weight from the controller, the datacenter route weight from the SD-WAN edge FE at the cloud datacenter, and the latency route weight. The total cost may be computed in different ways in different embodiments (e.g., using one route weight as a primary cost with others as tiebreakers, adding the route weights together, etc.). The latency route weights are computed by the SD-WAN edge FE at the branch network, in some embodiments, based on latency measurements between the SD-WAN edge FE at the branch and the SD-WAN edge FEs at the cloud datacenters. These measurements may be based on actual data traffic sent between the branch networks and the cloud datacenters or on separate measurements (e.g., control messages sent for the purposes of computing the latency).


In some embodiments, the geolocation route weight from the controller is a static value (because the physical distance is constant) while the datacenter route weight and latency route weights are updated in real-time. The SD-WAN edge FE at the branch network may periodically update the total cost for a route based on real-time changes to either the latency route weight or the datacenter route weight. When the total cost of one or more of the routes at the SD-WAN edge for a particular branch network is changed such that a different one of the routes has the lowest total cost (highest priority), existing connections are not re-routed from one datacenter to another but any new connections originating from that branch network to the set of resources are routed to the datacenter whose route now has the lowest total cost.


As indicated, in some embodiments the datacenter route weight associated with a route between a particular branch network and a particular cloud datacenter is received from the SD-WAN edge FE connected to the particular cloud datacenter. The SD-WAN edge FE connected to each cloud datacenter receives a message specifying a weight metric for the virtual network address from the cloud datacenter and converts the specified weight into the datacenter route weight for the SD-WAN. The SD-WAN edge FE at the cloud datacenter then provides the converted route weight to the SD-WAN edge FEs at each of the branch networks so that these FEs can use the datacenter route weight to calculate the total costs for their respective routes to the particular cloud datacenter.


In some embodiments, the message received by the particular SD-WAN edge FE at the cloud datacenter is a border gateway protocol (BGP) message that advertises the virtual network address and specifies the weight as a BGP community attribute, though other embodiments use other routing protocols or other types of messages to communicate the weight. In some embodiments, the SD-WAN edge FE converts this specified weight to a route weight in a type, length, value (TLV) format (e.g., a VeloCloud Routing Protocol (VCRP)) route weight. In some embodiments, the message is received from a load balancer executing within the cloud datacenter (e.g., on an FE that connects the cloud datacenter to the SD-WAN). The load balancers of some embodiments are responsible for adjusting the weight metrics for each of the cloud datacenters based on the capacity of the application resources at their respective datacenters. That is, when the application resources at a particular cloud datacenter are overutilized, the load balancer at that datacenter can increase the weight metric so that subsequent new connections for the application resources are less likely to be forwarded to that datacenter.


The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, the Detailed Description, the Drawings, and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, the Detailed Description, and the Drawings.





BRIEF DESCRIPTION OF FIGURES

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.



FIG. 1 illustrates a set of branch networks connected to a set of cloud datacenters through an SD-WAN of some embodiments.



FIG. 2 conceptually illustrates a process of some embodiments for installing routes to cloud datacenters across which a set of application resources is distributed.



FIG. 3 illustrates an SD-WAN of some embodiments through which an SD-WAN controller provides geolocation route weights to the SD-WAN edge FEs.



FIG. 4 conceptually illustrates a geolocation route weight matrix for a set of branch networks and a set of cloud datacenters, in some embodiments.



FIG. 5 illustrates the forwarding, in some embodiments, of initial datacenter route weights from the SD-WAN edge FEs at the cloud datacenters to the SD-WAN edge FEs at the branch networks.



FIG. 6 conceptually illustrates a workflow of some embodiments between a cloud datacenter and an SD-WAN edge FE connected to the cloud datacenter.



FIG. 7 conceptually illustrates a process of some embodiments for providing the datacenter route weights to SD-WAN edge FEs at the branch networks.



FIGS. 8A-8C conceptually illustrate an example of an SD-WAN across which sets of existing and new connections are established between a branch network and a set of cloud datacenters based on the total cost to route data messages between the branch network and each of the cloud datacenters.



FIG. 9 conceptually illustrates a computer system with which some embodiments of the invention are implemented.





DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.


Some embodiments of the invention provide a method of implementing context-aware routing for a software-defined wide-area network (SD-WAN). The SD-WAN, in some embodiments, is formed by a set of SD-WAN edge forwarding elements (FEs) that connects branch networks (or other enterprise networks) to a set of cloud datacenters across which application resources are distributed, with the set of application resources reachable at each of these cloud datacenters using the same virtual network address (e.g., the same virtual IP address). The SD-WAN edge FEs at the branch networks install routes for the virtual network address with next hops at each of the cloud datacenters, with these routes having different costs based on various factors. When an SD-WAN edge FE receives a data message for a new connection directed to the virtual network address, the FE selects the route with the lowest total cost (i.e., the highest priority).


In this context, the SD-WAN edge FEs at the branch networks use a combination of route weights from a combination of sources to identify total costs for routing data messages directed to the virtual network address to the different cloud datacenters across which the application resources are distributed. These route weights, in some embodiments, include geolocation route weights based on physical distances between the branch networks and the cloud datacenters, datacenter route weights that are updated in real time indicating capacity of the different cloud datacenters, and latency route weights indicating latencies for sending data messages between the branch networks and the cloud datacenters.



FIG. 1 illustrates a set of branch networks connected to a set of cloud datacenters through an SD-WAN of some embodiments. The SD-WAN 100 enables high performance and reliable branch network access across multiple different clouds, according to some embodiments. As shown, each of the branch networks 120, 122, and 124 are connected to the SD-WAN 100 by the SD-WAN edge FEs 110, 112, and 114, and each of the cloud datacenters 130-135 are connected to the SD-WAN by the SD-WAN edge FEs 116-118. Additionally, the SD-WAN 100 includes an SD-WAN controller 105 and a cloud gateway 140. In some embodiments, the elements of the SD-WAN 100 are in a full mesh topology in which each forwarding element is connected to every other forwarding element. In other embodiments, the SD-WAN elements are in partial mesh topologies.


The SD-WAN controller 105, in some embodiments, is a cluster of network managers and controllers that serves as a central point for managing (e.g., defining and modifying) configuration data that is provided to the edge FEs and/or gateways to configure some or all of the operations. In some embodiments, this SD-WAN controller 105 is in one or more public cloud datacenters, while in other embodiments it is in one or more private datacenters. In some embodiments, the SD-WAN controller 105 has a set of manager servers that defines and modifies the configuration data, and a set of controller servers that distributes the configuration data to the edge FEs, hubs (not shown) and/or gateways. In some embodiments, the SD-WAN controller 105 directs edge FEs (as well as hubs (not shown)) to use certain gateways (i.e., assigns a gateway to the edge forwarding elements and hubs). Additionally, as mentioned above and will be described further below, the SD-WAN controller 105 is also responsible for computing and distributing geolocation route weights to each of the SD-WAN edge FEs for use in route selection.


Each of the cloud datacenters 130-135 can be provided by the same or different providers, while each of the branch networks 120-124 belongs to the same entity, according to some embodiments. The branch networks 120-124, in some embodiments, are multi-machine sites of the entity. Examples of multi-machine sites of some embodiments include multi-user compute sites (e.g., branch offices or other physical locations having multi user computers and other user-operated devices and serving as source computers and devices for requests to other machines at other sites), datacenters (e.g., locations housing servers), etc. These multi-machine sites are often at different physical locations (e.g., different buildings, different cities, different states, etc.). In some embodiments, the cloud datacenters are public cloud datacenters, while in other embodiments the cloud datacenters are private cloud datacenters. In still other embodiments, the cloud datacenters may be a combination of public and private cloud datacenters. Examples of public clouds are public clouds provided by Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, etc., while examples of entities include a company (e.g., corporation, partnership, etc.), an organization (e.g., a school, a non-profit, a government entity, etc.), etc.


Each of the cloud datacenters 130-135 includes a respective gateway 150-155 for connecting the cloud datacenters to the SD-WAN edge FEs 116-118. Additionally, a set of application resources 160 is distributed across the cloud datacenters 130-135. The SD-WAN edge FEs 110-114 of the branch networks 120-124 receive various types of route weights from other elements of the SD-WAN (e.g., the SD-WAN controller 105, cloud gateway 140, SD-WAN edge FEs 116-118) and use these route weights to compute total costs for each route between the branch network and a cloud datacenter in order to access the resources 160 at the cloud datacenters.


In some embodiments, additional SD-WAN gateways may be present and can include multi-tenant, stateless service gateways deployed in strategic points of presence (PoPs) across the globe. Some such gateways serve as gateways to various clouds and datacenters. Also, in some embodiments, other SD-WAN forwarding elements may be present, including additional edge devices located at other branch sites of the entity, as well as SD-WAN hub forwarding nodes that can be used to connect to other edge forwarding nodes of other branch sites (not shown) to each other, as well as to resources at a datacenter that hosts the hub forwarding node. Hub forwarding nodes, in some embodiments, use or have one or more service engines to perform services (e.g., middlebox services) on data messages that it forwards from one branch site to another branch site.



FIG. 2 conceptually illustrates a process of some embodiments for installing routes to cloud datacenters across which a set of application resources is distributed. The process 200 is performed by an SD-WAN edge FE located at a branch network. FIG. 2 will be described below with references to FIGS. 3, 4, and 5. The process 200 starts when the SD-WAN edge FE receives (at 210) geolocation route weights from an SD-WAN controller for each cloud datacenter across which the set of application resources is distributed.


For instance, FIG. 3 illustrates an SD-WAN 300 through which the SD-WAN controller 105 provides geolocation route weights 305 to the SD-WAN edge FEs 110-118. The geolocation route weights, in some embodiments, correspond to physical distances between the branch networks and the cloud datacenters (e.g., such that larger physical distances are expressed as larger route weights). The geolocation route weight for a route between the Frankfurt branch network 120 and the Frankfurt cloud datacenter 130 would be smaller than the geolocation route weight between the Frankfurt branch network 120 and the London cloud datacenter 135.


In some embodiments, the SD-WAN controller 105 generates these geolocation route weights as a matrix of route weights for each link between one of the branch networks and one of the cloud datacenters, such that each branch network SD-WAN edge FE receives the geolocation route weights for its link to each of the cloud datacenters. FIG. 4, for example, conceptually illustrates a geolocation route weight matrix 400 for a set of branch networks and a set of cloud datacenters. Each SD-WAN edge FE for each branch network, in some embodiments, receives such a geolocation route weight matrix 400 and uses the matrix to identify geolocation routes weights for use in calculating total costs for each route. The geolocation route weights are static values that remain unchanged over time, according to some embodiments. That is, the geolocation route weight of 3 specified by the matrix 400 for the route between the Manchester branch and the London datacenter, for example, will be 3 regardless of changes to any other metrics (e.g., datacenter and latency route weights).


Returning to the process 200, the process next receives (at 220), from SD-WAN edge FEs connected to the cloud datacenters, datacenter route weights associated with internal capacity of the set of application resources located at the cloud datacenters. In some embodiments, larger route weights indicate less current capacity at the datacenter (i.e., a higher total cost, or lower priority, for the corresponding route). FIG. 5 illustrates the forwarding, in some embodiments, of initial datacenter route weights in an SD-WAN 500 from the SD-WAN edge FEs 116-118 at the cloud datacenters 130 and 135 to the SD-WAN edge FEs 110-114 at the branch networks 120-124.


In some embodiments, the initial route weights 505 are provided to the SD-WAN edge FEs at the branch networks from the SD-WAN edge FEs at the cloud datacenters via the cloud gateway 140. Once connections between the SD-WAN edge FEs at the branch networks and the SD-WAN edge FEs at the cloud datacenters have been established, different embodiments provide updates to the datacenter route weights to the SD-WAN edge FEs at the branch networks in different ways. Some embodiments continue to send these updates to the SD-WAN edge FEs at the branch networks via the cloud gateway 140, with the connections between edge FEs only used for data traffic. In other embodiments, however, the SD-WAN edge FEs at the cloud datacenters send updated route weights directly to the SD-WAN edge FEs at the branch networks once there is a connection established to those branch network SD-WAN edge FEs. As described further below, the SD-WAN edge FEs at the datacenters receive information for computing the route weights from load balancers at the datacenter.


The process 200 next determines (at 230) latency route weights indicating latencies for sending data messages between the branch network and each cloud datacenter. The latency route weights are computed by the SD-WAN edge FE at the branch network, in some embodiments, based on latency measurements between the SD-WAN edge FE at the branch and the SD-WAN edge FEs at the cloud datacenters. These measurements, in some embodiments, are determined using a dynamic multipath optimization technique, such as VeloCloud Multipath Protocol (VCMP). In other embodiments, the latency measurements may be based on actual data traffic sent between the branch networks and the cloud datacenters or on separate measurements (e.g., control messages sent for the purposes of computing the latency).


For each route for the virtual network address, the process uses (at 240) the received geolocation route weight, datacenter route weight, and latency route weight to determine a total cost for routing data messages to the set of application resources at the cloud datacenter. The total cost may be computed in different ways in different embodiments (e.g., using one route weight as a primary cost with others as tiebreakers, adding the route weights together, etc.).


In some embodiments, the geolocation route weight from the controller is a static value (because the physical distance is constant) as mentioned above, while the datacenter route weight and latency route weights are updated in real-time. The SD-WAN edge FE 110-114 at the branch network 120-124 may periodically update the total cost for a route based on real-time changes to either the latency route weight or the datacenter route weight (e.g., based on received updated datacenter routes weights). When the total cost of one or more of the routes at the SD-WAN edge for a particular branch network is changed such that a different one of the routes has the lowest total cost (highest priority), existing connections are not re-routed from one datacenter to another but any new connections originating from that branch network to the set of resources are routed to the datacenter whose route now has the lowest total cost.


The process installs (at 250) routes with the computed total costs into a routing table, and, for new connections directed to the virtual network address, uses (at 260) the route having the lowest total cost to route data messages for the new connections to the SD-WAN edge FE at the corresponding cloud datacenter. Because the total costs are updated periodically based on real-time changes to the latency and datacenter route weights, in some embodiments, each time a new connection directed to the virtual address is made, a different route may be selected. Following 260, the process 200 ends.


In some embodiments, before providing a datacenter route weight to the SD-WAN edge FEs at the branch networks, each SD-WAN edge FE connected to each cloud datacenter receives a message from the cloud datacenter specifying a weight metric for the virtual network address. FIG. 6 conceptually illustrates a workflow of some embodiments between such a cloud datacenter and an SD-WAN edge FE 605 connected to the cloud datacenter. As shown, the cloud datacenter 610 includes a gateway 615 and a set of host computers 630-635. The gateway 615 executes a load balancer 620, a forwarding device instance 622, and a stateful services instance 624, while each of the hosts 630-635 executes a respective forwarding device instance 640 and a set of VMs 650 (e.g., service VMs).


The datacenter 610 is one of multiple cloud datacenters that provide a set of application resources (e.g., a multicloud). In some embodiments, the cloud datacenter 610 may belong to more than one group of datacenters across which a set of application resources is distributed. That is, in some embodiments, a first subset of the VMs 650 are associated with one set of application resources, while a second subset of the VMs 650 are associated with a different set of application resources. In some such embodiments, each different set of application resources is reachable at a different virtual network address advertised by the datacenter 610.


In order to prevent an overutilization or underutilization of the application resources provided by the datacenter 610, the load balancer 620 performs load balancing within the datacenter 610 for the VMs 650 distributed across the hosts 630 and 635, as well as load balancing for the datacenter as a whole (i.e., based on incoming connections to the datacenter). FIG. 6 will be further described below by reference to FIG. 7, which conceptually illustrates a process of some embodiments for providing the datacenter route weights to SD-WAN edge FEs at the branch networks. The process 700 is performed by an SD-WAN edge FE connected to a particular cloud datacenter.


The process 700 starts when the SD-WAN edge FE receives (at 710), from a load balancer operating in the particular cloud datacenter, a message specifying a weight for a virtual network address (e.g., virtual internet protocol (VIP) address) associated with a set of application resources distributed across multiple cloud datacenters including the particular cloud datacenter. For example, the SD-WAN edge FE 605 receives (at the encircled 1) a weight from the load balancer 620 operating on the gateway 615 in the cloud datacenter 610.


In some embodiments, the message received by the SD-WAN edge FE at the particular cloud datacenter is a border gateway protocol (BGP) message that advertises the virtual network address (e.g., VIP) and specifies the weight as a BGP community attribute. In other embodiments, other routing protocols or other types of messages may be used to communicate the weight. The load balancers of some embodiments are responsible for calculating and adjusting the weight metrics for each of the cloud datacenters based on the capacity of the application resources at their respective datacenters. That is, when the application resources at a particular cloud datacenter are overutilized, the load balancer at that datacenter can increase the weight metric so that subsequent new connections for the application resources are less likely to be forwarded to that datacenter. In some embodiments, the first weight specified for a VIP for each cloud datacenter is the same across all of the cloud datacenters, and each load balancer adjusts their datacenter's respective weight based on the subsequent number of connections.


The process 700 converts (at 720) the specified weight into a datacenter route weight for the VIP for use in the SD-WAN. In some embodiments, the SD-WAN edge FE converts this specified weight to a route weight in a type, length, value (TLV) format (e.g., a VeloCloud Routing Protocol (VCRP) route weight). The SD-WAN edge FE 605, for instance, is illustrated as converting (at the encircled 2) the weight received from the load balancer 620 into a datacenter route weight that can be used by other SD-WAN edge FEs as part of their route selection processes.


The process 700 provides (at 730) the converted datacenter route weight to a set of SD-WAN edge FEs connected to a set of branch networks for use in selecting a route to the VIP for accessing the set of application resources. For example, the SD-WAN edge FE 605 sends out (at the encircled 3) the converted datacenter route weight. In some embodiments, such as for initial datacenter route weights, the SD-WAN edge FE 605 forwards the converted datacenter route weight to a cloud gateway (e.g., cloud gateway 140) for delivery to the SD-WAN edge FEs at the branch networks, and forwards any subsequent updates directly to the SD-WAN edge FEs at the branch networks. Following 730, the process 700 ends.


In some embodiments, the load balancer in the cloud datacenter calculates the weight provided to the SD-WAN edge FE based on capacity measurements of DCNs that provide the application resources. The DCNs can include virtual machines (VMs), a container, and physical computers (e.g., servers) with identical hardware and software, according to some embodiments. The computations are performed, in some embodiments, by components of the load balancer (e.g., the layer-4 (L4) AVI Load Balancer from VMware, Inc.). From a set of DCNs (e.g., the VMs 650), the load balancer identifies a first subset of DCNs that includes DCNs that have a latency that is higher than an average latency computed for the set of DCNs and identifies a second subset of DCNs that includes DCNs that have a latency that is lower than the average latency computed for the set of DCNs. For each DCN in the first subset of DCNs, the load balancer assigns to the DCN a weight value that corresponds to a target latency computed for the set of DCNs. Based on the assigned weight values for the first subset of DCNs, the load balancer computes an excess weight value (i.e., the excess weight that remains after the weights have been reduced for the first subset of DCNs) and redistributes the excess weight value across the second subset of DCNs.


The average latency computed for the set of DCNs, in some embodiments, is computed by first determining, for each DCN in the set of DCNs, a rolling median latency for the DCN based on a set of ten most recent recorded latencies for the DCN at its current weight, and using the rolling median latencies for each DCN in the set of DCNs to compute an average latency for the set of DCNs. The target latency that is used to determine the reduced weights for the first subset of DCNs, in some embodiments, is equal to the average latency computed for the set of DCNs. In some embodiments, to assign the weight value that corresponds to the target latency, the components of the load balancer generate a map between weight values assigned to the DCN and latencies recorded at each of those weight values. The recorded latencies, in some embodiments, are representative of a rolling median calculated for the DCN at each weight value. In some embodiments, when an exact weight value for the target latency is not available in the map for a particular DCN, polynomial regression (i.e., a regression analysis modeling an independent variable and a dependent variable as an nth degree polynomial in the independent variable) is used to determine the weight value for the target latency.


To redistribute the computed excess weight value across the second subset of DCNs, in some embodiments, inverse differences must be computed for the second subset of DCNs. The inverse difference for each DCN corresponds to a percentage of the excess weight value that is to be redistributed to that DCN, according to some embodiments. The inverse difference for a DCN is calculated by first computing a difference between the average latency for the set of DCNs and a rolling median latency for the DCN at its current assigned weight (i.e., assigned first weight value), and dividing that difference by the sum of differences calculated for each DCN in the second subset. As a result, the excess weight is proportionally redistributed across the second subset of DCNs. The capacity-aware L4 load balancer and its functionalities are also described in commonly owned U.S. patent application Ser. No. 17/746,830, entitled “CAPACITY-AWARE LAYER-4 LOAD BALANCER,” filed on May 17, 2022. U.S. patent application Ser. No. 17/746,830 is incorporated herein by reference in its entirety.



FIGS. 8A-8C conceptually illustrate an example of an SD-WAN across which sets of existing and new connections are established between a branch network and a set of cloud datacenters based on the total cost to route data messages between the branch network and each of the cloud datacenters. As shown, FIG. 8A illustrates an SD-WAN 800 through which an SD-WAN edge FE 810 at a branch network 820 can establish tunnels to SD-WAN edge FEs 812-814 at cloud datacenters 822-824 for accessing application resources 850 provided by each of the cloud datacenters 822-824. In addition to the resources 850, each of the cloud datacenters 822-824 includes a respective load balancer 840-845 that operates on a respective gateway 830-835.


As discussed above, the SD-WAN edge FE at the branch network 820 calculates the total costs for each route between the branch network 820 and each cloud datacenter 822-824. For instance, the routing table 805a includes total costs for routes between the branch network 820 and each of the cloud datacenters 822-824. The total costs, in some embodiments, are calculated using a combination of the datacenter route weights, latency route weights, and geolocation route weights specified for the routes. For instance, in some embodiments, the total cost of a route is the sum of the datacenter, latency, and geolocation route weights. In other embodiments, one route weight is selected as a primary cost, and the other route weights are used as tie breakers. For instance, in some embodiments, the geolocation route weights are used as the primary route weights, and if two routes have the same geolocation route weight, the route having a lower latency and/or datacenter route weight is selected. In still other embodiments, other combinations of the route weights may also be used.


The routing table 805a, as mentioned above, includes total costs for each route between the branch network 820 and a cloud datacenter 822-824. For instance, the route between the branch network 820 (with its location specified as London) and the cloud datacenter 822 (with its location also specified as London) has a total cost of 8, while the route between the branch network 820 and the cloud datacenter 824 (with its location specified as Frankfurt) has a total cost of 10. Accordingly, the set of existing connections 860 are established between the SD-WAN edge FE 810 for the branch network 820 and the SD-WAN edge FE 812 at the cloud datacenter 822.



FIG. 8B conceptually illustrates the SD-WAN 800 as the SD-WAN edge FEs 812-814 receive updated weights from the load balancers 840-845 in the respective cloud datacenters 822-824, and provide converted updated datacenter route weights to the SD-WAN edge FE 810 at the branch network 820. After the SD-WAN edge FE 810 receives the updated datacenter route weights, new total costs are calculated for each of the routes and the table 805b is updated with the new total costs. As shown, the new total cost for the route between the branch network 820 and the cloud datacenter 822 has increased from 8 to 9, while the total cost for the route between the branch network 820 and the cloud datacenter 824 has decreased from 10 to 4.


In some embodiments, the datacenter route weight changes are based on an overutilization and/or an underutilization of resources at one or more cloud datacenters. For instance, in this example, the load balancer 840 in the cloud datacenter 822 may determine that the number of connections the SD-WAN edge FE 810 for the branch network 820 has established with the SD-WAN edge FE 812 for the cloud datacenter 822 exceeds a threshold number of connections, and as a result, increases the weight for the datacenter 822. Conversely, the load balancer 845 in the cloud datacenter 824 may determine that its datacenter resources 850 are underutilized and, in turn, reduce the weight for the datacenter 824 in order to attract more connections.


Finally, FIG. 8C illustrates the SD-WAN 800 after the SD-WAN edge FE 810 at the branch network 820 has established new connections 865 to the SD-WAN edge FE 814 at the cloud datacenter 824 based on the updated total costs specified in the table 805b for routing data messages to the cloud datacenters 822-824. Despite the new connections 865 being established with the SD-WAN edge FE 814 at the datacenter 824, the existing connections 860 to the SD-WAN edge FE 812 at the datacenter 822 are maintained.


Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer-readable storage medium (also referred to as computer-readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer-readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer-readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.


In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.



FIG. 9 conceptually illustrates a computer system 900 with which some embodiments of the invention are implemented. The computer system 900 can be used to implement any of the above-described hosts, controllers, gateway, and edge forwarding elements. As such, it can be used to execute any of the above described processes. This computer system 900 includes various types of non-transitory machine-readable media and interfaces for various other types of machine-readable media. Computer system 900 includes a bus 905, processing unit(s) 910, a system memory 925, a read-only memory 930, a permanent storage device 935, input devices 940, and output devices 945.


The bus 905 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 900. For instance, the bus 905 communicatively connects the processing unit(s) 910 with the read-only memory 930, the system memory 925, and the permanent storage device 935.


From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) 910 may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 930 stores static data and instructions that are needed by the processing unit(s) 910 and other modules of the computer system 900. The permanent storage device 935, on the other hand, is a read-and-write memory device. This device 935 is a non-volatile memory unit that stores instructions and data even when the computer system 900 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 935.


Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 935, the system memory 925 is a read-and-write memory device. However, unlike storage device 935, the system memory 925 is a volatile read-and-write memory, such as random access memory. The system memory 925 stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 925, the permanent storage device 935, and/or the read-only memory 930. From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.


The bus 905 also connects to the input and output devices 940 and 945. The input devices 940 enable the user to communicate information and select commands to the computer system 900. The input devices 940 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 945 display images generated by the computer system 900. The output devices 945 include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as touchscreens that function as both input and output devices 940 and 945.


Finally, as shown in FIG. 9, bus 905 also couples computer system 900 to a network 965 through a network adapter (not shown). In this manner, the computer 900 can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet), or a network of networks (such as the Internet). Any or all components of computer system 900 may be used in conjunction with the invention.


Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.


While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application-specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.


As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms “display” or “displaying” mean displaying on an electronic device. As used in this specification, the terms “computer-readable medium,” “computer-readable media,” and “machine-readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.


While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims
  • 1. A method of implementing context-aware routing for a software-defined wide-area network (SD-WAN), the method comprising: at an SD-WAN edge forwarding element (FE) located at a branch network connected to the SD-WAN: receiving, from an SD-WAN controller, geolocation route weights for each of a plurality of cloud datacenters across which a set of application resources is distributed, the application resources all reachable at a same virtual network address; andfor each cloud datacenter of the plurality of cloud datacenters, installing a route for the virtual network address between the branch network and the cloud datacenter, the routes having different total costs based at least in part on the geolocation metrics received from the SD-WAN controller, wherein the SD-WAN edge FE selects between the routes to establish connections to the set of application resources.
  • 2. The method of claim 1, wherein the geolocation route weights correspond to physical distances between the branch network and each cloud datacenter of the plurality of cloud datacenters.
  • 3. The method of claim 1, wherein the SD-WAN edge FE selects between the routes to establish connections from the branch network to the set of application resources by selecting a route for the virtual network address having a lowest total cost.
  • 4. The method of claim 3, wherein the route having the lowest total cost corresponds to a particular cloud datacenter of the plurality of cloud datacenters having a lowest geolocation route weight.
  • 5. The method of claim 4, wherein the cloud datacenter having the lowest geolocation route weight is geographically closer to the branch network than the other cloud datacenters in the plurality of cloud datacenters.
  • 6. The method of claim 1, wherein the method further comprises receiving, for each cloud datacenter in the plurality of cloud datacenters, a datacenter route weight associated with an internal capacity of the application resources located at the cloud datacenter, wherein the total costs of the installed routes are further based at least in part on the datacenter route weights.
  • 7. The method of claim 6, wherein the received datacenter route weights are initial first datacenter route weights, the method further comprising: receiving, for a particular one of the cloud datacenters, an adjusted second datacenter route weight associated with an updated internal capacity of the application resources located at the cloud datacenter; andbased on the adjusted second datacenter route weight, updating the total cost for the route between the branch network and the particular cloud datacenter.
  • 8. The method of claim 7, wherein: the particular cloud datacenter is a first one of the cloud datacenters;before receiving the adjusted second route weight metrics, the SD-WAN edge FE selects a first route to establish a first set of connections to the set of application resources at the first cloud datacenter; andafter receiving the adjusted second route weight metrics, the SD-WAN edge FE selects a second route to establish a second set of connections to the set of application resources at a second cloud datacenter while maintaining the first set of connections to the set of application resources at the first cloud datacenter.
  • 9. The method of claim 6 further comprising, for each cloud datacenter of the plurality of cloud datacenters, identifying a latency route weight indicating a latency for sending data messages between the branch network and the cloud datacenter, wherein the total costs of the installed routes are further based at least in part on the latency route weights such that the total cost for each route for the virtual network address between the branch network and a cloud datacenter is based on (i) the geolocation route weight for the cloud datacenter received from the SD-WAN controller, (ii) the datacenter route weight associated with the internal capacity of the application resources located at the cloud datacenter, and (iii) the latency route weight indicating the latency for sending data messages between the branch network and the cloud datacenter.
  • 10. The method of claim 9, wherein: the geolocation route weights are fixed geolocation route weights; andthe datacenter route weights and the latency route weights are updated in real time.
  • 11. The method of claim 6, wherein the datacenter route weights are received from SD-WAN edge FEs connected to the plurality of cloud datacenters.
  • 12. The method of claim 11, wherein the datacenter route weights are based on capacity determinations by load balancers located in each of the cloud datacenters that distribute data traffic between the application resources located at their respective cloud datacenters.
  • 13. A non-transitory machine readable medium storing a program for a software-defined wide-area network (SD-WAN) edge forwarding element (FE) located a branch network connected to an SD-WAN, the program for execution by at least one processing unit, the program for implementing context-aware routing for the SD-WAN, the program comprising sets of instructions for: receiving, from an SD-WAN controller, geolocation route weights for each of a plurality of cloud datacenters across which a set of application resources is distributed, the application resources all reachable at a same virtual network address; andfor each cloud datacenter of the plurality of cloud datacenters, installing a route for the virtual network address between the branch network and the cloud datacenter, the routes having different total costs based at least in part on the geolocation metrics received from the SD-WAN controller, wherein the SD-WAN edge FE selects between the routes to establish connections to the set of application resources.
  • 14. The non-transitory machine readable medium of claim 13, wherein the geolocation route weights correspond to physical distances between the branch network and each cloud datacenter of the plurality of cloud datacenters.
  • 15. The non-transitory machine readable medium of claim 13, wherein the SD-WAN edge FE selects between the routes to establish connections from the branch network to the set of application resources by selecting a route for the virtual network address having a lowest total cost.
  • 16. The non-transitory machine readable medium of claim 15, wherein the route having the lowest total cost corresponds to a particular cloud datacenter of the plurality of cloud datacenters having a lowest geolocation route weight.
  • 17. The non-transitory machine readable medium of claim 16, wherein the cloud datacenter having the lowest geolocation route weight is geographically closer to the branch network than the other cloud datacenters in the plurality of cloud datacenters.
  • 18. The non-transitory machine readable medium of claim 13, wherein the program further comprises a set of instructions for receiving, for each cloud datacenter in the plurality of cloud datacenters, a datacenter route weight associated with an internal capacity of the application resources located at the cloud datacenter, wherein the total costs of the installed routes are further based at least in part on the datacenter route weights.
  • 19. The non-transitory machine readable medium of claim 18, wherein the received datacenter route weights are initial first datacenter route weights, the program further comprising sets of instructions for: receiving, for a particular one of the cloud datacenters, an adjusted second datacenter route weight associated with an updated internal capacity of the application resources located at the cloud datacenter; andbased on the adjusted second datacenter route weight, updating the total cost for the route between the branch network and the particular cloud datacenter.
  • 20. The non-transitory machine readable medium of claim 19, wherein: the particular cloud datacenter is a first one of the cloud datacenters;before receiving the adjusted second route weight metrics, the program further comprises a set of instructions for selecting a first route to establish a first set of connections to the set of application resources at the first cloud datacenter; andafter receiving the adjusted second route weight metrics, the program further comprises a set of instructions for selecting a second route to establish a second set of connections to the set of application resources at a second cloud datacenter while maintaining the first set of connections to the set of application resources at the first cloud datacenter.
  • 21. The non-transitory machine readable medium of claim 18, the program further comprising, for each cloud datacenter of the plurality of cloud datacenters, a set of instructions for identifying a latency route weight indicating a latency for sending data messages between the branch network and the cloud datacenter, wherein the total costs of the installed routes are further based at least in part on the latency route weights such that the total cost for each route for the virtual network address between the branch network and a cloud datacenter is based on (i) the geolocation route weight for the cloud datacenter received from the SD-WAN controller, (ii) the datacenter route weight associated with the internal capacity of the application resources located at the cloud datacenter, and (iii) the latency route weight indicating the latency for sending data messages between the branch network and the cloud datacenter.
  • 22. The non-transitory machine readable medium of claim 21, wherein: the geolocation route weights are fixed geolocation route weights; andthe datacenter route weights and the latency route weights are updated in real time.
  • 23. The non-transitory machine readable medium of claim 18, wherein the datacenter route weights are received from SD-WAN edge FEs connected to the plurality of cloud datacenters.
  • 24. The non-transitory machine readable medium of claim 23, wherein the datacenter route weights are based on capacity determinations by load balancers located in each of the cloud datacenters that distribute data traffic between the application resources located at their respective cloud datacenters.
US Referenced Citations (1037)
Number Name Date Kind
5652751 Sharony Jul 1997 A
5909553 Campbell et al. Jun 1999 A
6154465 Pickett Nov 2000 A
6157648 Voit et al. Dec 2000 A
6201810 Masuda et al. Mar 2001 B1
6363378 Conklin et al. Mar 2002 B1
6445682 Weitz Sep 2002 B1
6744775 Beshai et al. Jun 2004 B1
6976087 Westfall et al. Dec 2005 B1
7003481 Banka et al. Feb 2006 B2
7280476 Anderson Oct 2007 B2
7313629 Nucci et al. Dec 2007 B1
7320017 Kurapati et al. Jan 2008 B1
7373660 Guichard et al. May 2008 B1
7581022 Griffin et al. Aug 2009 B1
7680925 Sathyanarayana et al. Mar 2010 B2
7681236 Tamura et al. Mar 2010 B2
7751409 Carolan Jul 2010 B1
7962458 Holenstein et al. Jun 2011 B2
8051185 Lee et al. Nov 2011 B2
8094575 Vadlakonda et al. Jan 2012 B1
8094659 Arad Jan 2012 B1
8111692 Ray Feb 2012 B2
8141156 Mao et al. Mar 2012 B1
8224971 Miller et al. Jul 2012 B1
8228928 Parandekar et al. Jul 2012 B2
8243589 Trost et al. Aug 2012 B1
8259566 Chen et al. Sep 2012 B2
8274891 Averi et al. Sep 2012 B2
8301749 Finklestein et al. Oct 2012 B1
8385227 Downey Feb 2013 B1
8516129 Skene Aug 2013 B1
8566452 Goodwin et al. Oct 2013 B1
8588066 Goel et al. Nov 2013 B2
8630291 Shaffer et al. Jan 2014 B2
8661295 Khanna et al. Feb 2014 B1
8724456 Hong et al. May 2014 B1
8724503 Johnsson et al. May 2014 B2
8745177 Kazerani et al. Jun 2014 B1
8769129 Watsen et al. Jul 2014 B2
8797874 Yu et al. Aug 2014 B2
8799504 Capone et al. Aug 2014 B2
8804745 Sinn Aug 2014 B1
8806482 Nagargadde et al. Aug 2014 B1
8855071 Sankaran et al. Oct 2014 B1
8856339 Mestery et al. Oct 2014 B2
8964548 Keralapura et al. Feb 2015 B1
8989199 Sella et al. Mar 2015 B1
9009217 Nagargadde et al. Apr 2015 B1
9015299 Shah Apr 2015 B1
9019837 Lue et al. Apr 2015 B2
9055000 Ghosh et al. Jun 2015 B1
9060025 Xu Jun 2015 B2
9071607 Twitchell, Jr. Jun 2015 B2
9075771 Gawali et al. Jul 2015 B1
9100329 Jiang et al. Aug 2015 B1
9135037 Petrescu-Prahova et al. Sep 2015 B1
9137334 Zhou Sep 2015 B2
9154327 Marino et al. Oct 2015 B1
9203764 Shirazipour et al. Dec 2015 B2
9225591 Beheshti-Zavareh et al. Dec 2015 B2
9306949 Richard et al. Apr 2016 B1
9323561 Ayala et al. Apr 2016 B2
9336040 Dong et al. May 2016 B2
9354983 Yenamandra et al. May 2016 B1
9356943 Lopilato et al. May 2016 B1
9379981 Zhou et al. Jun 2016 B1
9413724 Xu Aug 2016 B2
9419878 Hsiao et al. Aug 2016 B2
9432245 Sorenson et al. Aug 2016 B1
9438566 Zhang et al. Sep 2016 B2
9450817 Bahadur et al. Sep 2016 B1
9450852 Chen et al. Sep 2016 B1
9462010 Stevenson Oct 2016 B1
9467478 Khan et al. Oct 2016 B1
9485163 Fries et al. Nov 2016 B1
9521067 Michael et al. Dec 2016 B2
9525564 Lee Dec 2016 B2
9542219 Bryant et al. Jan 2017 B1
9559951 Sajassi et al. Jan 2017 B1
9563423 Pittman Feb 2017 B1
9602389 Maveli et al. Mar 2017 B1
9608917 Anderson et al. Mar 2017 B1
9608962 Chang Mar 2017 B1
9614748 Battersby et al. Apr 2017 B1
9621460 Mehta et al. Apr 2017 B2
9641551 Kariyanahalli May 2017 B1
9648547 Hart et al. May 2017 B1
9665432 Kruse et al. May 2017 B2
9686127 Ramachandran et al. Jun 2017 B2
9692714 Nair et al. Jun 2017 B1
9715401 Devine et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9722815 Mukundan et al. Aug 2017 B2
9747249 Cherian et al. Aug 2017 B2
9755965 Yadav et al. Sep 2017 B1
9787559 Schroeder Oct 2017 B1
9807004 Koley et al. Oct 2017 B2
9819540 Bahadur et al. Nov 2017 B1
9819565 Djukic et al. Nov 2017 B2
9825822 Holland Nov 2017 B1
9825911 Brandwine Nov 2017 B1
9825992 Xu Nov 2017 B2
9832128 Ashner et al. Nov 2017 B1
9832205 Santhi et al. Nov 2017 B2
9875355 Williams Jan 2018 B1
9906401 Rao Feb 2018 B1
9923826 Murgia Mar 2018 B2
9930011 Clemons, Jr. et al. Mar 2018 B1
9935829 Miller et al. Apr 2018 B1
9942787 Tillotson Apr 2018 B1
9996370 Khafizov et al. Jun 2018 B1
10038601 Becker et al. Jul 2018 B1
10057183 Salle et al. Aug 2018 B2
10057294 Xu Aug 2018 B2
10116593 Sinn et al. Oct 2018 B1
10135789 Mayya et al. Nov 2018 B2
10142226 Wu et al. Nov 2018 B1
10178032 Freitas Jan 2019 B1
10178037 Appleby et al. Jan 2019 B2
10187289 Chen et al. Jan 2019 B1
10200264 Menon et al. Feb 2019 B2
10229017 Zou et al. Mar 2019 B1
10237123 Dubey et al. Mar 2019 B2
10250498 Bales et al. Apr 2019 B1
10263832 Ghosh Apr 2019 B1
10263848 Wolting Apr 2019 B2
10320664 Nainar et al. Jun 2019 B2
10320691 Matthews et al. Jun 2019 B1
10326830 Singh Jun 2019 B1
10348767 Lee et al. Jul 2019 B1
10355989 Panchal et al. Jul 2019 B1
10425382 Mayya et al. Sep 2019 B2
10454708 Mibu Oct 2019 B2
10454714 Mayya et al. Oct 2019 B2
10461993 Turabi et al. Oct 2019 B2
10498652 Mayya et al. Dec 2019 B2
10511546 Singarayan et al. Dec 2019 B2
10523539 Mayya et al. Dec 2019 B2
10550093 Ojima et al. Feb 2020 B2
10554538 Spohn et al. Feb 2020 B2
10560431 Chen et al. Feb 2020 B1
10565464 Han et al. Feb 2020 B2
10567519 Mukhopadhyaya et al. Feb 2020 B1
10574482 Oré et al. Feb 2020 B2
10574528 Mayya et al. Feb 2020 B2
10594516 Cidon et al. Mar 2020 B2
10594591 Houjyo et al. Mar 2020 B2
10594659 El-Moussa et al. Mar 2020 B2
10608844 Cidon et al. Mar 2020 B2
10630505 Rubenstein et al. Apr 2020 B2
10637889 Ermagan et al. Apr 2020 B2
10666460 Cidon et al. May 2020 B2
10666497 Tahhan et al. May 2020 B2
10686625 Cidon et al. Jun 2020 B2
10693739 Naseri et al. Jun 2020 B1
10708144 Mohan et al. Jul 2020 B2
10715382 Guan et al. Jul 2020 B2
10715427 Raj Jul 2020 B2
10749711 Mukundan et al. Aug 2020 B2
10778466 Cidon et al. Sep 2020 B2
10778528 Mayya et al. Sep 2020 B2
10778557 Ganichev et al. Sep 2020 B2
10805114 Cidon et al. Oct 2020 B2
10805272 Mayya et al. Oct 2020 B2
10819564 Turabi et al. Oct 2020 B2
10826775 Moreno et al. Nov 2020 B1
10841131 Cidon et al. Nov 2020 B2
10911374 Kumar et al. Feb 2021 B1
10924388 Burns et al. Feb 2021 B1
10938693 Mayya et al. Mar 2021 B2
10951529 Duan et al. Mar 2021 B2
10958479 Cidon et al. Mar 2021 B2
10959098 Cidon Mar 2021 B2
10992558 Silva et al. Apr 2021 B1
10992568 Michael et al. Apr 2021 B2
10999100 Cidon et al. May 2021 B2
10999137 Cidon et al. May 2021 B2
10999165 Cidon et al. May 2021 B2
10999197 Hooda et al. May 2021 B2
11005684 Cidon May 2021 B2
11018995 Cidon et al. May 2021 B2
11044190 Ramaswamy et al. Jun 2021 B2
11050588 Mayya et al. Jun 2021 B2
11050644 Hegde et al. Jun 2021 B2
11071005 Shen et al. Jul 2021 B2
11089111 Markuze et al. Aug 2021 B2
11095612 Oswal et al. Aug 2021 B1
11102032 Cidon et al. Aug 2021 B2
11108595 Knutsen et al. Aug 2021 B2
11108851 Kurmala et al. Aug 2021 B1
11115347 Gupta et al. Sep 2021 B2
11115426 Pazhyannur et al. Sep 2021 B1
11115480 Markuze et al. Sep 2021 B2
11121962 Michael et al. Sep 2021 B2
11121985 Cidon et al. Sep 2021 B2
11128492 Sethi et al. Sep 2021 B2
11146632 Rubenstein Oct 2021 B2
11153230 Cidon et al. Oct 2021 B2
11171885 Cidon et al. Nov 2021 B2
11212140 Mukundan et al. Dec 2021 B2
11212238 Cidon et al. Dec 2021 B2
11223514 Mayya et al. Jan 2022 B2
11245641 Ramaswamy et al. Feb 2022 B2
11252079 Michael et al. Feb 2022 B2
11252105 Cidon et al. Feb 2022 B2
11252106 Cidon et al. Feb 2022 B2
11258728 Cidon et al. Feb 2022 B2
11310170 Cidon et al. Apr 2022 B2
11323307 Mayya et al. May 2022 B2
11349722 Mayya et al. May 2022 B2
11363124 Markuze et al. Jun 2022 B2
11374904 Mayya et al. Jun 2022 B2
11375005 Rolando et al. Jun 2022 B1
11381474 Kumar et al. Jul 2022 B1
11381499 Ramaswamy et al. Jul 2022 B1
11388086 Ramaswamy et al. Jul 2022 B1
11394640 Ramaswamy et al. Jul 2022 B2
11418997 Devadoss et al. Aug 2022 B2
11438789 Devadoss et al. Sep 2022 B2
11444865 Ramaswamy et al. Sep 2022 B2
11444872 Mayya et al. Sep 2022 B2
11477127 Ramaswamy et al. Oct 2022 B2
11489720 Kempanna et al. Nov 2022 B1
11489783 Ramaswamy et al. Nov 2022 B2
11502936 Zad Tootaghaj Nov 2022 B2
11509571 Ramaswamy et al. Nov 2022 B1
11516049 Cidon et al. Nov 2022 B2
11522780 Wallace et al. Dec 2022 B1
11526434 Brooker et al. Dec 2022 B1
11533248 Mayya et al. Dec 2022 B2
11552874 Pragada et al. Jan 2023 B1
11575591 Ramaswamy et al. Feb 2023 B2
11575600 Markuze et al. Feb 2023 B2
11582144 Ramaswamy et al. Feb 2023 B2
11582298 Hood et al. Feb 2023 B2
11601356 Gandhi et al. Mar 2023 B2
11606225 Cidon et al. Mar 2023 B2
11606286 Michael et al. Mar 2023 B2
11606314 Cidon et al. Mar 2023 B2
11606712 Devadoss et al. Mar 2023 B2
11611507 Ramaswamy et al. Mar 2023 B2
11637768 Ramaswamy et al. Apr 2023 B2
11677720 Mayya et al. Jun 2023 B2
11689959 Devadoss et al. Jun 2023 B2
11700196 Michael et al. Jul 2023 B2
11706126 Silva et al. Jul 2023 B2
11706127 Michael et al. Jul 2023 B2
11709710 Markuze et al. Jul 2023 B2
11716286 Ramaswamy et al. Aug 2023 B2
11722925 Devadoss et al. Aug 2023 B2
11729065 Ramaswamy et al. Aug 2023 B2
20020049687 Helsper et al. Apr 2002 A1
20020075542 Kumar et al. Jun 2002 A1
20020085488 Kobayashi Jul 2002 A1
20020087716 Mustafa Jul 2002 A1
20020152306 Tuck Oct 2002 A1
20020186682 Kawano et al. Dec 2002 A1
20020198840 Banka et al. Dec 2002 A1
20030050061 Wu et al. Mar 2003 A1
20030061269 Hathaway et al. Mar 2003 A1
20030088697 Matsuhira May 2003 A1
20030112766 Riedel et al. Jun 2003 A1
20030112808 Solomon Jun 2003 A1
20030126468 Markham Jul 2003 A1
20030161313 Jinmei et al. Aug 2003 A1
20030161321 Karam et al. Aug 2003 A1
20030189919 Gupta et al. Oct 2003 A1
20030202506 Perkins et al. Oct 2003 A1
20030219030 Gubbi Nov 2003 A1
20040059831 Chu et al. Mar 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040165601 Liu et al. Aug 2004 A1
20040224771 Chen et al. Nov 2004 A1
20050078690 DeLangis Apr 2005 A1
20050149604 Navada Jul 2005 A1
20050154790 Nagata et al. Jul 2005 A1
20050172161 Cruz et al. Aug 2005 A1
20050195754 Nosella Sep 2005 A1
20050210479 Andjelic Sep 2005 A1
20050265255 Kodialam et al. Dec 2005 A1
20060002291 Alicherry et al. Jan 2006 A1
20060034335 Karaoguz et al. Feb 2006 A1
20060114838 Mandavilli et al. Jun 2006 A1
20060171365 Borella Aug 2006 A1
20060182034 Klinker et al. Aug 2006 A1
20060182035 Vasseur Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060193252 Naseh et al. Aug 2006 A1
20060195605 Sundarrajan et al. Aug 2006 A1
20060245414 Susai et al. Nov 2006 A1
20070050594 Augsburg et al. Mar 2007 A1
20070064604 Chen et al. Mar 2007 A1
20070064702 Bates et al. Mar 2007 A1
20070083727 Johnston et al. Apr 2007 A1
20070091794 Filsfils et al. Apr 2007 A1
20070103548 Carter May 2007 A1
20070115812 Hughes May 2007 A1
20070121486 Guichard et al. May 2007 A1
20070130325 Lesser Jun 2007 A1
20070162619 Aloni et al. Jul 2007 A1
20070162639 Chu et al. Jul 2007 A1
20070177511 Das et al. Aug 2007 A1
20070195797 Patel et al. Aug 2007 A1
20070237081 Kodialam et al. Oct 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070268882 Breslau et al. Nov 2007 A1
20080002670 Bugenhagen et al. Jan 2008 A1
20080049621 McGuire et al. Feb 2008 A1
20080055241 Goldenberg et al. Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080095187 Jung et al. Apr 2008 A1
20080117930 Chakareski et al. May 2008 A1
20080144532 Chamarajanagar et al. Jun 2008 A1
20080168086 Miller et al. Jul 2008 A1
20080175150 Bolt et al. Jul 2008 A1
20080181116 Kavanaugh et al. Jul 2008 A1
20080219276 Shah Sep 2008 A1
20080240121 Xiong et al. Oct 2008 A1
20080263218 Beerends et al. Oct 2008 A1
20090013210 McIntosh et al. Jan 2009 A1
20090028092 Rothschild Jan 2009 A1
20090125617 Klessig et al. May 2009 A1
20090141642 Sun Jun 2009 A1
20090154463 Hines et al. Jun 2009 A1
20090182874 Morford et al. Jul 2009 A1
20090247204 Sennett et al. Oct 2009 A1
20090268605 Campbell et al. Oct 2009 A1
20090274045 Meier et al. Nov 2009 A1
20090276657 Wetmore et al. Nov 2009 A1
20090303880 Maltz et al. Dec 2009 A1
20100008361 Guichard et al. Jan 2010 A1
20100017802 Lojewski Jan 2010 A1
20100046532 Okita Feb 2010 A1
20100061379 Parandekar et al. Mar 2010 A1
20100080129 Strahan et al. Apr 2010 A1
20100088440 Banks et al. Apr 2010 A1
20100091782 Hiscock Apr 2010 A1
20100091823 Retana et al. Apr 2010 A1
20100098092 Luo et al. Apr 2010 A1
20100100768 Yamamoto et al. Apr 2010 A1
20100107162 Edwards et al. Apr 2010 A1
20100118727 Draves et al. May 2010 A1
20100118886 Saavedra May 2010 A1
20100128600 Srinivasmurthy et al. May 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191884 Holenstein et al. Jul 2010 A1
20100223621 Joshi et al. Sep 2010 A1
20100226246 Proulx Sep 2010 A1
20100290422 Haigh et al. Nov 2010 A1
20100309841 Conte Dec 2010 A1
20100309912 Mehta et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100332657 Elyashev et al. Dec 2010 A1
20110001604 Ludlow et al. Jan 2011 A1
20110007752 Silva et al. Jan 2011 A1
20110032939 Nozaki et al. Feb 2011 A1
20110035187 DeJori et al. Feb 2011 A1
20110040814 Higgins Feb 2011 A1
20110075674 Li et al. Mar 2011 A1
20110078783 Duan et al. Mar 2011 A1
20110107139 Middlecamp et al. May 2011 A1
20110110370 Moreno et al. May 2011 A1
20110141877 Xu et al. Jun 2011 A1
20110142041 Imai Jun 2011 A1
20110153909 Dong Jun 2011 A1
20110235509 Szymanski Sep 2011 A1
20110255397 Kadakia et al. Oct 2011 A1
20110302663 Prodan et al. Dec 2011 A1
20120008630 Ould-Brahim Jan 2012 A1
20120027013 Napierala Feb 2012 A1
20120039309 Evans et al. Feb 2012 A1
20120099601 Haddad et al. Apr 2012 A1
20120136697 Peles et al. May 2012 A1
20120140935 Kruglick Jun 2012 A1
20120157068 Eichen et al. Jun 2012 A1
20120173694 Yan et al. Jul 2012 A1
20120173919 Patel et al. Jul 2012 A1
20120182940 Taleb et al. Jul 2012 A1
20120221955 Raleigh et al. Aug 2012 A1
20120227093 Shatzkamer et al. Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120250682 Vincent et al. Oct 2012 A1
20120250686 Vincent et al. Oct 2012 A1
20120266026 Chikkalingaiah et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120287818 Corti et al. Nov 2012 A1
20120300615 Kempf et al. Nov 2012 A1
20120307659 Yamada Dec 2012 A1
20120317270 Vrbaski et al. Dec 2012 A1
20120317291 Wolfe Dec 2012 A1
20130007505 Spear Jan 2013 A1
20130019005 Hui et al. Jan 2013 A1
20130021968 Reznik et al. Jan 2013 A1
20130044764 Casado et al. Feb 2013 A1
20130051237 Ong Feb 2013 A1
20130051399 Zhang et al. Feb 2013 A1
20130054763 Merwe et al. Feb 2013 A1
20130086267 Gelenbe et al. Apr 2013 A1
20130097304 Asthana et al. Apr 2013 A1
20130103729 Cooney et al. Apr 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130117530 Kim et al. May 2013 A1
20130124718 Griffith et al. May 2013 A1
20130124911 Griffith et al. May 2013 A1
20130124912 Griffith et al. May 2013 A1
20130128757 Chowdhary et al. May 2013 A1
20130128889 Mathur et al. May 2013 A1
20130142201 Kim et al. Jun 2013 A1
20130170354 Takashima et al. Jul 2013 A1
20130173768 Kundu et al. Jul 2013 A1
20130173788 Song Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130185446 Zeng et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191688 Agarwal et al. Jul 2013 A1
20130223226 Narayanan et al. Aug 2013 A1
20130223454 Dunbar et al. Aug 2013 A1
20130235870 Tripathi et al. Sep 2013 A1
20130238782 Zhao et al. Sep 2013 A1
20130242718 Zhang Sep 2013 A1
20130254599 Katkar et al. Sep 2013 A1
20130258839 Wang et al. Oct 2013 A1
20130258847 Zhang et al. Oct 2013 A1
20130258939 Wang Oct 2013 A1
20130266015 Qu et al. Oct 2013 A1
20130266019 Qu et al. Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130286846 Atlas et al. Oct 2013 A1
20130297611 Moritz et al. Nov 2013 A1
20130297770 Zhang Nov 2013 A1
20130301469 Suga Nov 2013 A1
20130301642 Radhakrishnan et al. Nov 2013 A1
20130308444 Sem-Jacobsen et al. Nov 2013 A1
20130315242 Wang et al. Nov 2013 A1
20130315243 Huang et al. Nov 2013 A1
20130329548 Nakil et al. Dec 2013 A1
20130329601 Yin et al. Dec 2013 A1
20130329734 Chesla et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20140016464 Shirazipour et al. Jan 2014 A1
20140019604 Twitchell, Jr. Jan 2014 A1
20140019750 Dodgson et al. Jan 2014 A1
20140040975 Raleigh et al. Feb 2014 A1
20140064283 Balus et al. Mar 2014 A1
20140071832 Johnsson et al. Mar 2014 A1
20140092907 Sridhar et al. Apr 2014 A1
20140108665 Arora et al. Apr 2014 A1
20140112171 Pasdar Apr 2014 A1
20140115584 Mudigonda et al. Apr 2014 A1
20140122559 Branson et al. May 2014 A1
20140123135 Huang et al. May 2014 A1
20140126418 Brendel et al. May 2014 A1
20140156818 Hunt Jun 2014 A1
20140156823 Liu et al. Jun 2014 A1
20140157363 Banerjee Jun 2014 A1
20140160935 Zecharia et al. Jun 2014 A1
20140164560 Ko et al. Jun 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140164718 Schaik et al. Jun 2014 A1
20140173113 Vemuri et al. Jun 2014 A1
20140173331 Martin et al. Jun 2014 A1
20140181824 Saund et al. Jun 2014 A1
20140189074 Parker Jul 2014 A1
20140208317 Nakagawa Jul 2014 A1
20140219135 Li et al. Aug 2014 A1
20140223507 Xu Aug 2014 A1
20140226664 Chen et al. Aug 2014 A1
20140229210 Sharifian et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140258535 Zhang Sep 2014 A1
20140269690 Tu Sep 2014 A1
20140279862 Dietz et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140310282 Sprague et al. Oct 2014 A1
20140317440 Biermayr et al. Oct 2014 A1
20140321277 Lynn, Jr. et al. Oct 2014 A1
20140337500 Lee Nov 2014 A1
20140337674 Ivancic et al. Nov 2014 A1
20140341109 Cartmell et al. Nov 2014 A1
20140351394 Elisha Nov 2014 A1
20140355441 Jain Dec 2014 A1
20140365834 Stone et al. Dec 2014 A1
20140372582 Ghanwani et al. Dec 2014 A1
20150003240 Drwiega et al. Jan 2015 A1
20150016249 Mukundan et al. Jan 2015 A1
20150029864 Raileanu et al. Jan 2015 A1
20150039744 Niazi et al. Feb 2015 A1
20150046572 Cheng et al. Feb 2015 A1
20150052247 Threefoot et al. Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150056960 Egner et al. Feb 2015 A1
20150058917 Xu Feb 2015 A1
20150088942 Shah Mar 2015 A1
20150089628 Lang Mar 2015 A1
20150092603 Aguayo et al. Apr 2015 A1
20150096011 Watt Apr 2015 A1
20150100958 Banavalikar et al. Apr 2015 A1
20150106809 Reddy et al. Apr 2015 A1
20150124603 Ketheesan et al. May 2015 A1
20150134777 Onoue May 2015 A1
20150139238 Pourzandi et al. May 2015 A1
20150146539 Mehta et al. May 2015 A1
20150163152 Li Jun 2015 A1
20150169340 Haddad et al. Jun 2015 A1
20150172121 Farkas et al. Jun 2015 A1
20150172169 DeCusatis et al. Jun 2015 A1
20150188823 Williams et al. Jul 2015 A1
20150189009 Bemmel Jul 2015 A1
20150195178 Bhattacharya et al. Jul 2015 A1
20150201036 Nishiki et al. Jul 2015 A1
20150222543 Song Aug 2015 A1
20150222638 Morley Aug 2015 A1
20150236945 Michael et al. Aug 2015 A1
20150236962 Veres et al. Aug 2015 A1
20150244617 Nakil et al. Aug 2015 A1
20150249644 Xu Sep 2015 A1
20150257081 Ramanujan et al. Sep 2015 A1
20150264055 Budhani et al. Sep 2015 A1
20150271056 Chunduri et al. Sep 2015 A1
20150271104 Chikkamath et al. Sep 2015 A1
20150271303 Neginhal et al. Sep 2015 A1
20150281004 Kakadia et al. Oct 2015 A1
20150312142 Barabash et al. Oct 2015 A1
20150312760 O'Toole Oct 2015 A1
20150317169 Sinha et al. Nov 2015 A1
20150326426 Luo et al. Nov 2015 A1
20150334025 Rader Nov 2015 A1
20150334696 Gu et al. Nov 2015 A1
20150341271 Gomez Nov 2015 A1
20150349978 Wu et al. Dec 2015 A1
20150350907 Timariu et al. Dec 2015 A1
20150358232 Chen et al. Dec 2015 A1
20150358236 Roach et al. Dec 2015 A1
20150363221 Terayama et al. Dec 2015 A1
20150363733 Brown Dec 2015 A1
20150365323 Duminuco et al. Dec 2015 A1
20150372943 Hasan et al. Dec 2015 A1
20150372982 Herle et al. Dec 2015 A1
20150381407 Wang et al. Dec 2015 A1
20150381462 Choi et al. Dec 2015 A1
20150381493 Bansal et al. Dec 2015 A1
20160019317 Pawar et al. Jan 2016 A1
20160020844 Hart et al. Jan 2016 A1
20160021597 Hart et al. Jan 2016 A1
20160035183 Buchholz et al. Feb 2016 A1
20160036924 Koppolu et al. Feb 2016 A1
20160036938 Aviles et al. Feb 2016 A1
20160037434 Gopal et al. Feb 2016 A1
20160072669 Saavedra Mar 2016 A1
20160072684 Manuguri et al. Mar 2016 A1
20160080268 Anand et al. Mar 2016 A1
20160080502 Yadav et al. Mar 2016 A1
20160105353 Cociglio Apr 2016 A1
20160105392 Thakkar et al. Apr 2016 A1
20160105471 Nunes et al. Apr 2016 A1
20160105488 Thakkar et al. Apr 2016 A1
20160117185 Fang et al. Apr 2016 A1
20160134461 Sampath et al. May 2016 A1
20160134527 Kwak et al. May 2016 A1
20160134528 Lin et al. May 2016 A1
20160134591 Liao et al. May 2016 A1
20160142373 Ossipov May 2016 A1
20160147607 Dornemann et al. May 2016 A1
20160150055 Choi May 2016 A1
20160164832 Bellagamba et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160173338 Wolting Jun 2016 A1
20160191363 Haraszti et al. Jun 2016 A1
20160191374 Singh et al. Jun 2016 A1
20160192403 Gupta et al. Jun 2016 A1
20160197834 Luft Jul 2016 A1
20160197835 Luft Jul 2016 A1
20160198003 Luft Jul 2016 A1
20160205071 Cooper et al. Jul 2016 A1
20160210209 Verkaik et al. Jul 2016 A1
20160212773 Kanderholm et al. Jul 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160218951 Vasseur et al. Jul 2016 A1
20160234099 Jiao Aug 2016 A1
20160234161 Banerjee et al. Aug 2016 A1
20160255169 Kovvuri et al. Sep 2016 A1
20160255542 Hughes et al. Sep 2016 A1
20160261493 Li Sep 2016 A1
20160261495 Xia et al. Sep 2016 A1
20160261506 Hegde et al. Sep 2016 A1
20160261639 Xu Sep 2016 A1
20160269298 Li et al. Sep 2016 A1
20160269926 Sundaram Sep 2016 A1
20160285736 Gu Sep 2016 A1
20160299775 Madapurath et al. Oct 2016 A1
20160301471 Kunz et al. Oct 2016 A1
20160308762 Teng et al. Oct 2016 A1
20160315912 Mayya et al. Oct 2016 A1
20160323377 Einkauf et al. Nov 2016 A1
20160328159 Coddington et al. Nov 2016 A1
20160330111 Manghirmalani et al. Nov 2016 A1
20160337202 Ben-Itzhak et al. Nov 2016 A1
20160352588 Subbarayan et al. Dec 2016 A1
20160353268 Senarath et al. Dec 2016 A1
20160359738 Sullenberger et al. Dec 2016 A1
20160366187 Kamble Dec 2016 A1
20160371153 Dornemann Dec 2016 A1
20160378527 Zamir Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20160380906 Hodique et al. Dec 2016 A1
20170005986 Bansal et al. Jan 2017 A1
20170006499 Hampel et al. Jan 2017 A1
20170012870 Blair et al. Jan 2017 A1
20170019428 Cohn Jan 2017 A1
20170024260 Chandrasekaran et al. Jan 2017 A1
20170026273 Yao et al. Jan 2017 A1
20170026283 Williams et al. Jan 2017 A1
20170026355 Mathaiyan et al. Jan 2017 A1
20170034046 Cai et al. Feb 2017 A1
20170034052 Chanda et al. Feb 2017 A1
20170034129 Sawant et al. Feb 2017 A1
20170048296 Ramalho et al. Feb 2017 A1
20170053258 Carney et al. Feb 2017 A1
20170055131 Kong et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170063782 Jain et al. Mar 2017 A1
20170063783 Yong et al. Mar 2017 A1
20170063794 Jain et al. Mar 2017 A1
20170064005 Lee Mar 2017 A1
20170075710 Prasad et al. Mar 2017 A1
20170093625 Pera et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170104653 Badea et al. Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170109212 Gaurav et al. Apr 2017 A1
20170118067 Vedula Apr 2017 A1
20170118173 Arramreddy et al. Apr 2017 A1
20170123939 Maheshwari et al. May 2017 A1
20170126475 Mahkonen et al. May 2017 A1
20170126516 Tiagi et al. May 2017 A1
20170126564 Mayya et al. May 2017 A1
20170134186 Mukundan et al. May 2017 A1
20170134520 Abbasi et al. May 2017 A1
20170139789 Fries et al. May 2017 A1
20170142000 Cai et al. May 2017 A1
20170149637 Banikazemi et al. May 2017 A1
20170155557 Desai et al. Jun 2017 A1
20170155566 Martinsen et al. Jun 2017 A1
20170155590 Dillon et al. Jun 2017 A1
20170163473 Sadana et al. Jun 2017 A1
20170171024 Anerousis et al. Jun 2017 A1
20170171310 Gardner Jun 2017 A1
20170180220 Leckey et al. Jun 2017 A1
20170181210 Nadella et al. Jun 2017 A1
20170195161 Ruel et al. Jul 2017 A1
20170195169 Mills et al. Jul 2017 A1
20170201568 Hussam et al. Jul 2017 A1
20170201585 Doraiswamy et al. Jul 2017 A1
20170207976 Rovner et al. Jul 2017 A1
20170214545 Cheng et al. Jul 2017 A1
20170214701 Hasan Jul 2017 A1
20170223117 Messerli et al. Aug 2017 A1
20170236060 Ignatyev Aug 2017 A1
20170237710 Mayya et al. Aug 2017 A1
20170242784 Heorhiadi et al. Aug 2017 A1
20170257260 Govindan et al. Sep 2017 A1
20170257309 Appanna Sep 2017 A1
20170264496 Ao et al. Sep 2017 A1
20170279717 Bethers et al. Sep 2017 A1
20170279741 Elias et al. Sep 2017 A1
20170279803 Desai et al. Sep 2017 A1
20170280474 Vesterinen et al. Sep 2017 A1
20170288987 Pasupathy et al. Oct 2017 A1
20170289002 Ganguli et al. Oct 2017 A1
20170289027 Ratnasingham Oct 2017 A1
20170295264 Touitou et al. Oct 2017 A1
20170302501 Shi et al. Oct 2017 A1
20170302565 Ghobadi et al. Oct 2017 A1
20170310641 Jiang et al. Oct 2017 A1
20170310691 Vasseur et al. Oct 2017 A1
20170317945 Guo et al. Nov 2017 A1
20170317954 Masurekar et al. Nov 2017 A1
20170317969 Masurekar et al. Nov 2017 A1
20170317974 Masurekar et al. Nov 2017 A1
20170324628 Dhanabalan Nov 2017 A1
20170337086 Zhu et al. Nov 2017 A1
20170339022 Hegde et al. Nov 2017 A1
20170339054 Yadav et al. Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20170346722 Smith et al. Nov 2017 A1
20170364419 Lo Dec 2017 A1
20170366445 Nemirovsky et al. Dec 2017 A1
20170366467 Martin et al. Dec 2017 A1
20170373950 Szilagyi et al. Dec 2017 A1
20170374174 Evens et al. Dec 2017 A1
20180006995 Bickhart et al. Jan 2018 A1
20180007005 Chanda et al. Jan 2018 A1
20180007123 Cheng et al. Jan 2018 A1
20180013636 Seetharamaiah et al. Jan 2018 A1
20180014051 Phillips et al. Jan 2018 A1
20180020035 Boggia et al. Jan 2018 A1
20180034668 Mayya et al. Feb 2018 A1
20180041425 Zhang Feb 2018 A1
20180041470 Schultz et al. Feb 2018 A1
20180062875 Tumuluru Mar 2018 A1
20180062914 Boutros et al. Mar 2018 A1
20180062917 Chandrashekhar et al. Mar 2018 A1
20180063036 Chandrashekhar et al. Mar 2018 A1
20180063193 Chandrashekhar et al. Mar 2018 A1
20180063233 Park Mar 2018 A1
20180063743 Tumuluru et al. Mar 2018 A1
20180069924 Tumuluru et al. Mar 2018 A1
20180074909 Bishop et al. Mar 2018 A1
20180077081 Lauer et al. Mar 2018 A1
20180077202 Xu Mar 2018 A1
20180084081 Kuchibhotla et al. Mar 2018 A1
20180091370 Arai Mar 2018 A1
20180097725 Wood et al. Apr 2018 A1
20180114569 Strachan et al. Apr 2018 A1
20180123910 Fitzgibbon May 2018 A1
20180123946 Ramachandran et al. May 2018 A1
20180131608 Jiang et al. May 2018 A1
20180131615 Zhang May 2018 A1
20180131720 Hobson et al. May 2018 A1
20180145899 Rao May 2018 A1
20180159796 Wang et al. Jun 2018 A1
20180159856 Gujarathi Jun 2018 A1
20180167378 Kostyukov et al. Jun 2018 A1
20180176073 Dubey et al. Jun 2018 A1
20180176082 Katz et al. Jun 2018 A1
20180176130 Banerjee et al. Jun 2018 A1
20180176252 Nimmagadda et al. Jun 2018 A1
20180181423 Gunda et al. Jun 2018 A1
20180205746 Boutnaru et al. Jul 2018 A1
20180213472 Ishii et al. Jul 2018 A1
20180219765 Michael et al. Aug 2018 A1
20180219766 Michael et al. Aug 2018 A1
20180234300 Mayya et al. Aug 2018 A1
20180248790 Tan et al. Aug 2018 A1
20180260125 Botes et al. Sep 2018 A1
20180261085 Liu et al. Sep 2018 A1
20180262468 Kumar et al. Sep 2018 A1
20180270104 Zheng et al. Sep 2018 A1
20180278541 Wu et al. Sep 2018 A1
20180287907 Kulshreshtha et al. Oct 2018 A1
20180295101 Gehrmann Oct 2018 A1
20180295529 Jen et al. Oct 2018 A1
20180302286 Mayya et al. Oct 2018 A1
20180302321 Manthiramoorthy et al. Oct 2018 A1
20180307851 Lewis Oct 2018 A1
20180316606 Sung et al. Nov 2018 A1
20180351855 Sood et al. Dec 2018 A1
20180351862 Jeganathan et al. Dec 2018 A1
20180351863 Vairavakkalai et al. Dec 2018 A1
20180351882 Jeganathan et al. Dec 2018 A1
20180359323 Madden Dec 2018 A1
20180367445 Bajaj Dec 2018 A1
20180373558 Chang et al. Dec 2018 A1
20180375744 Mayya et al. Dec 2018 A1
20180375824 Mayya et al. Dec 2018 A1
20180375967 Pithawala et al. Dec 2018 A1
20190013883 Vargas et al. Jan 2019 A1
20190014038 Ritchie Jan 2019 A1
20190020588 Twitchell, Jr. Jan 2019 A1
20190020627 Yuan Jan 2019 A1
20190021085 Mochizuki et al. Jan 2019 A1
20190028378 Houjyo et al. Jan 2019 A1
20190028552 Johnson et al. Jan 2019 A1
20190036808 Shenoy et al. Jan 2019 A1
20190036810 Michael et al. Jan 2019 A1
20190036813 Shenoy et al. Jan 2019 A1
20190046056 Khachaturian et al. Feb 2019 A1
20190058657 Chunduri et al. Feb 2019 A1
20190058709 Kempf et al. Feb 2019 A1
20190068470 Mirsky Feb 2019 A1
20190068493 Ram et al. Feb 2019 A1
20190068500 Hira Feb 2019 A1
20190075083 Mayya et al. Mar 2019 A1
20190081894 Yousaf et al. Mar 2019 A1
20190103990 Cidon et al. Apr 2019 A1
20190103991 Cidon et al. Apr 2019 A1
20190103992 Cidon et al. Apr 2019 A1
20190103993 Cidon et al. Apr 2019 A1
20190104035 Cidon et al. Apr 2019 A1
20190104049 Cidon et al. Apr 2019 A1
20190104050 Cidon et al. Apr 2019 A1
20190104051 Cidon et al. Apr 2019 A1
20190104052 Cidon et al. Apr 2019 A1
20190104053 Cidon et al. Apr 2019 A1
20190104063 Cidon et al. Apr 2019 A1
20190104064 Cidon et al. Apr 2019 A1
20190104109 Cidon et al. Apr 2019 A1
20190104111 Cidon et al. Apr 2019 A1
20190104413 Cidon et al. Apr 2019 A1
20190109769 Jain et al. Apr 2019 A1
20190132221 Boutros et al. May 2019 A1
20190132234 Dong et al. May 2019 A1
20190132322 Song et al. May 2019 A1
20190140889 Mayya et al. May 2019 A1
20190140890 Mayya et al. May 2019 A1
20190149525 Gunda et al. May 2019 A1
20190158371 Dillon et al. May 2019 A1
20190158605 Markuze et al. May 2019 A1
20190199539 Deng et al. Jun 2019 A1
20190220703 Prakash et al. Jul 2019 A1
20190222499 Chen et al. Jul 2019 A1
20190238364 Boutros et al. Aug 2019 A1
20190238446 Barzik et al. Aug 2019 A1
20190238449 Michael et al. Aug 2019 A1
20190238450 Michael et al. Aug 2019 A1
20190238483 Marichetty et al. Aug 2019 A1
20190238497 Tourrilhes et al. Aug 2019 A1
20190268421 Markuze et al. Aug 2019 A1
20190268973 Bull et al. Aug 2019 A1
20190278631 Bernat et al. Sep 2019 A1
20190280962 Michael et al. Sep 2019 A1
20190280963 Michael et al. Sep 2019 A1
20190280964 Michael et al. Sep 2019 A1
20190288875 Shen et al. Sep 2019 A1
20190306197 Degioanni Oct 2019 A1
20190306282 Masputra et al. Oct 2019 A1
20190313278 Liu Oct 2019 A1
20190313907 Khachaturian et al. Oct 2019 A1
20190319847 Nahar et al. Oct 2019 A1
20190319881 Maskara et al. Oct 2019 A1
20190327109 Guichard et al. Oct 2019 A1
20190334786 Dutta et al. Oct 2019 A1
20190334813 Raj et al. Oct 2019 A1
20190334820 Zhao Oct 2019 A1
20190342201 Singh Nov 2019 A1
20190342219 Liu et al. Nov 2019 A1
20190356736 Narayanaswamy et al. Nov 2019 A1
20190364099 Thakkar et al. Nov 2019 A1
20190364456 Yu Nov 2019 A1
20190372888 Michael et al. Dec 2019 A1
20190372889 Michael et al. Dec 2019 A1
20190372890 Michael et al. Dec 2019 A1
20190394081 Tahhan et al. Dec 2019 A1
20200014609 Hockett et al. Jan 2020 A1
20200014615 Michael et al. Jan 2020 A1
20200014616 Michael et al. Jan 2020 A1
20200014661 Mayya et al. Jan 2020 A1
20200014663 Chen et al. Jan 2020 A1
20200021514 Michael et al. Jan 2020 A1
20200021515 Michael et al. Jan 2020 A1
20200036624 Michael et al. Jan 2020 A1
20200044943 Bor-Yaliniz et al. Feb 2020 A1
20200044969 Hao et al. Feb 2020 A1
20200059420 Abraham Feb 2020 A1
20200059457 Raza et al. Feb 2020 A1
20200059459 Abraham et al. Feb 2020 A1
20200067831 Spraggins et al. Feb 2020 A1
20200092207 Sipra et al. Mar 2020 A1
20200097327 Beyer et al. Mar 2020 A1
20200099625 Yigit et al. Mar 2020 A1
20200099659 Cometto et al. Mar 2020 A1
20200106696 Michael et al. Apr 2020 A1
20200106706 Mayya et al. Apr 2020 A1
20200119952 Mayya et al. Apr 2020 A1
20200127905 Mayya et al. Apr 2020 A1
20200127911 Gilson et al. Apr 2020 A1
20200153701 Mohan et al. May 2020 A1
20200153736 Liebherr et al. May 2020 A1
20200159661 Keymolen et al. May 2020 A1
20200162407 Tillotson May 2020 A1
20200169473 Rimar et al. May 2020 A1
20200177503 Hooda et al. Jun 2020 A1
20200177550 Valluri et al. Jun 2020 A1
20200177629 Hooda et al. Jun 2020 A1
20200186471 Shen et al. Jun 2020 A1
20200195557 Duan et al. Jun 2020 A1
20200204460 Schneider et al. Jun 2020 A1
20200213212 Dillon et al. Jul 2020 A1
20200213224 Cheng et al. Jul 2020 A1
20200218558 Sreenath et al. Jul 2020 A1
20200235990 Janakiraman et al. Jul 2020 A1
20200235999 Mayya et al. Jul 2020 A1
20200236046 Jain et al. Jul 2020 A1
20200241927 Yang et al. Jul 2020 A1
20200244721 S et al. Jul 2020 A1
20200252234 Ramamoorthi et al. Aug 2020 A1
20200259700 Bhalla et al. Aug 2020 A1
20200267184 Vera-Schockner Aug 2020 A1
20200267203 Jindal et al. Aug 2020 A1
20200280587 Janakiraman et al. Sep 2020 A1
20200287819 Theogaraj et al. Sep 2020 A1
20200287976 Theogaraj et al. Sep 2020 A1
20200296011 Jain et al. Sep 2020 A1
20200296026 Michael et al. Sep 2020 A1
20200301764 Thoresen et al. Sep 2020 A1
20200314006 Mackie et al. Oct 2020 A1
20200314614 Moustafa et al. Oct 2020 A1
20200322230 Natal et al. Oct 2020 A1
20200322287 Connor et al. Oct 2020 A1
20200336336 Sethi et al. Oct 2020 A1
20200344089 Motwani et al. Oct 2020 A1
20200344143 Faseela et al. Oct 2020 A1
20200344163 Gupta et al. Oct 2020 A1
20200351188 Arora et al. Nov 2020 A1
20200358878 Bansal et al. Nov 2020 A1
20200366530 Mukundan et al. Nov 2020 A1
20200366562 Mayya et al. Nov 2020 A1
20200382345 Zhao et al. Dec 2020 A1
20200382387 Pasupathy et al. Dec 2020 A1
20200403821 Dev et al. Dec 2020 A1
20200412483 Tan et al. Dec 2020 A1
20200412576 Kondapavuluru et al. Dec 2020 A1
20200413283 Shen et al. Dec 2020 A1
20210006482 Hwang et al. Jan 2021 A1
20210006490 Michael et al. Jan 2021 A1
20210021538 Meck et al. Jan 2021 A1
20210029019 Kottapalli Jan 2021 A1
20210029088 Mayya et al. Jan 2021 A1
20210036888 Makkalla et al. Feb 2021 A1
20210036987 Mishra et al. Feb 2021 A1
20210037159 Shimokawa Feb 2021 A1
20210049191 Masson et al. Feb 2021 A1
20210067372 Cidon et al. Mar 2021 A1
20210067373 Cidon et al. Mar 2021 A1
20210067374 Cidon et al. Mar 2021 A1
20210067375 Cidon et al. Mar 2021 A1
20210067407 Cidon et al. Mar 2021 A1
20210067427 Cidon et al. Mar 2021 A1
20210067442 Sundararajan et al. Mar 2021 A1
20210067461 Cidon et al. Mar 2021 A1
20210067464 Cidon et al. Mar 2021 A1
20210067467 Cidon et al. Mar 2021 A1
20210067468 Cidon et al. Mar 2021 A1
20210073001 Rogers et al. Mar 2021 A1
20210092062 Dhanabalan et al. Mar 2021 A1
20210099360 Parsons et al. Apr 2021 A1
20210105199 C H et al. Apr 2021 A1
20210111998 Saavedra Apr 2021 A1
20210112034 Sundararajan et al. Apr 2021 A1
20210126830 R. et al. Apr 2021 A1
20210126853 Ramaswamy et al. Apr 2021 A1
20210126854 Guo et al. Apr 2021 A1
20210126860 Ramaswamy et al. Apr 2021 A1
20210144091 C H et al. May 2021 A1
20210160169 Shen et al. May 2021 A1
20210160813 Gupta et al. May 2021 A1
20210176255 Hill et al. Jun 2021 A1
20210184952 Mayya et al. Jun 2021 A1
20210184966 Ramaswamy et al. Jun 2021 A1
20210184983 Ramaswamy et al. Jun 2021 A1
20210194814 Roux et al. Jun 2021 A1
20210226880 Ramamoorthy et al. Jul 2021 A1
20210234728 Cidon et al. Jul 2021 A1
20210234775 Devadoss et al. Jul 2021 A1
20210234786 Devadoss et al. Jul 2021 A1
20210234804 Devadoss et al. Jul 2021 A1
20210234805 Devadoss et al. Jul 2021 A1
20210235312 Devadoss et al. Jul 2021 A1
20210235313 Devadoss et al. Jul 2021 A1
20210266262 Subramanian et al. Aug 2021 A1
20210279069 Salgaonkar et al. Sep 2021 A1
20210314289 Chandrashekhar et al. Oct 2021 A1
20210314385 Pande et al. Oct 2021 A1
20210328835 Mayya et al. Oct 2021 A1
20210336880 Gupta et al. Oct 2021 A1
20210377109 Shrivastava et al. Dec 2021 A1
20210377156 Michael et al. Dec 2021 A1
20210392060 Silva et al. Dec 2021 A1
20210392070 Tootaghaj et al. Dec 2021 A1
20210392171 Srinivas et al. Dec 2021 A1
20210399920 Sundararajan et al. Dec 2021 A1
20210399978 Michael et al. Dec 2021 A9
20210400113 Markuze et al. Dec 2021 A1
20210400512 Agarwal et al. Dec 2021 A1
20210409277 Jeuk et al. Dec 2021 A1
20220006726 Michael et al. Jan 2022 A1
20220006751 Ramaswamy et al. Jan 2022 A1
20220006756 Ramaswamy et al. Jan 2022 A1
20220029902 Shemer et al. Jan 2022 A1
20220035673 Markuze et al. Feb 2022 A1
20220038370 Vasseur et al. Feb 2022 A1
20220038557 Markuze et al. Feb 2022 A1
20220045927 Liu et al. Feb 2022 A1
20220052928 Sundararajan et al. Feb 2022 A1
20220061059 Dunsmore et al. Feb 2022 A1
20220086035 Devaraj et al. Mar 2022 A1
20220094644 Cidon et al. Mar 2022 A1
20220123961 Mukundan et al. Apr 2022 A1
20220131740 Mayya et al. Apr 2022 A1
20220131807 Srinivas et al. Apr 2022 A1
20220131898 Hooda et al. Apr 2022 A1
20220141184 Oswal et al. May 2022 A1
20220158923 Ramaswamy et al. May 2022 A1
20220158924 Ramaswamy et al. May 2022 A1
20220158926 Wennerström et al. May 2022 A1
20220166713 Markuze et al. May 2022 A1
20220191719 Roy Jun 2022 A1
20220198229 López et al. Jun 2022 A1
20220210035 Hendrickson et al. Jun 2022 A1
20220210041 Gandhi et al. Jun 2022 A1
20220210042 Gandhi et al. Jun 2022 A1
20220210122 Levin et al. Jun 2022 A1
20220217015 Vuggrala et al. Jul 2022 A1
20220231949 Ramaswamy et al. Jul 2022 A1
20220231950 Ramaswamy Jul 2022 A1
20220232411 Vijayakumar et al. Jul 2022 A1
20220239596 Kumar et al. Jul 2022 A1
20220294701 Mayya et al. Sep 2022 A1
20220335027 Seshadri et al. Oct 2022 A1
20220337553 Mayya et al. Oct 2022 A1
20220353152 Ramaswamy Nov 2022 A1
20220353171 Ramaswamy et al. Nov 2022 A1
20220353175 Ramaswamy et al. Nov 2022 A1
20220353182 Ramaswamy et al. Nov 2022 A1
20220353190 Ramaswamy et al. Nov 2022 A1
20220360500 Ramaswamy et al. Nov 2022 A1
20220407773 Kempanna et al. Dec 2022 A1
20220407774 Kempanna et al. Dec 2022 A1
20220407790 Kempanna et al. Dec 2022 A1
20220407820 Kempanna et al. Dec 2022 A1
20220407915 Kempanna et al. Dec 2022 A1
20230006929 Mayya et al. Jan 2023 A1
20230025586 Rolando et al. Jan 2023 A1
20230026330 Rolando et al. Jan 2023 A1
20230026865 Rolando et al. Jan 2023 A1
20230028872 Ramaswamy Jan 2023 A1
20230039869 Ramaswamy et al. Feb 2023 A1
20230041916 Zhang et al. Feb 2023 A1
20230054961 Ramaswamy et al. Feb 2023 A1
20230105680 Simlai et al. Apr 2023 A1
20230121871 Mayya et al. Apr 2023 A1
20230164158 Fellows et al. May 2023 A1
20230179445 Cidon et al. Jun 2023 A1
20230179502 Ramaswamy et al. Jun 2023 A1
20230179521 Markuze et al. Jun 2023 A1
20230179543 Cidon et al. Jun 2023 A1
20230216768 Zohar et al. Jul 2023 A1
20230216801 Markuze et al. Jul 2023 A1
20230216804 Zohar et al. Jul 2023 A1
20230221874 Markuze et al. Jul 2023 A1
20230224356 Markuze et al. Jul 2023 A1
20230224759 Ramaswamy Jul 2023 A1
20230231845 Manoharan et al. Jul 2023 A1
20230239234 Zohar et al. Jul 2023 A1
20230261974 Ramaswamy et al. Aug 2023 A1
20230308421 Mayya et al. Sep 2023 A1
Foreign Referenced Citations (54)
Number Date Country
1483270 Mar 2004 CN
1926809 Mar 2007 CN
102577270 Jul 2012 CN
102811165 Dec 2012 CN
104205757 Dec 2014 CN
104956329 Sep 2015 CN
106230650 Dec 2016 CN
106656847 May 2017 CN
106998284 Aug 2017 CN
110447209 Nov 2019 CN
111198764 May 2020 CN
1031224 Mar 2005 EP
1912381 Apr 2008 EP
2538637 Dec 2012 EP
2763362 Aug 2014 EP
3041178 Jul 2016 EP
3297211 Mar 2018 EP
3509256 Jul 2019 EP
3346650 Nov 2019 EP
2002368792 Dec 2002 JP
2010233126 Oct 2010 JP
2014200010 Oct 2014 JP
2017059991 Mar 2017 JP
2017524290 Aug 2017 JP
20170058201 May 2017 KR
2574350 Feb 2016 RU
2000078004 Dec 2000 WO
03073701 Sep 2003 WO
2005071861 Aug 2005 WO
2007016834 Feb 2007 WO
2012167184 Dec 2012 WO
2015092565 Jun 2015 WO
2016061546 Apr 2016 WO
2016123314 Aug 2016 WO
2017083975 May 2017 WO
2019070611 Apr 2019 WO
2019094522 May 2019 WO
2020012491 Jan 2020 WO
2020018704 Jan 2020 WO
2020091777 May 2020 WO
2020101922 May 2020 WO
2020112345 Jun 2020 WO
2021040934 Mar 2021 WO
2021118717 Jun 2021 WO
2021150465 Jul 2021 WO
2021211906 Oct 2021 WO
2022005607 Jan 2022 WO
2022082680 Apr 2022 WO
2022154850 Jul 2022 WO
2022159156 Jul 2022 WO
2022231668 Nov 2022 WO
2022235303 Nov 2022 WO
2022265681 Dec 2022 WO
2023009159 Feb 2023 WO
Non-Patent Literature Citations (69)
Entry
Non-Published Commonly Owned U.S. Appl. No. 17/967,795, filed Oct. 17, 2022, 39 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/976,784, filed Oct. 29, 2022, 55 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/083,536, filed Dec. 18, 2022, 27 pages, VMware, Inc.
Taleb, Tarik, “D4.1 Mobile Network Cloud Component Design,” Mobile Cloud Networking, Nov. 8, 2013, 210 pages, MobileCloud Networking Consortium, retrieved from http://www.mobile-cloud-networking.eu/site/index.php?process=download&id=127&code=89d30565cd2ce087d3f8e95f9ad683066510a61f.
Valtulina, Luca, “Seamless Distributed Mobility Management (DMM) Solution in Cloud Based LTE Systems,” Master Thesis, Nov. 2013, 168 pages, University of Twente, retrieved from http://essay.utwente.nl/64411/1/Luca_Valtulina_MSc_Report_final.pdf.
Zakurdaev, Gieorgi, et al., “Dynamic On-Demand Virtual Extensible LAN Tunnels via Software-Defined Wide Area Networks,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, Jan. 26-29, 2022, 6 pages, IEEE, Las Vegas, NV, USA.
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036.
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain.
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Cisco, Barcelona, Spain, retrieved from https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf.
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/.
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482.
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages, vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287.
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE.
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA.
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel.
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK.
Guo, Xiangyi, et al., U.S. Appl. No. 62/925,193, filed Oct. 23, 2019, 26 pages.
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland.
Jivorasetkul, Supalerk, et al., “End-to-End Header Compression over Software-Defined Networks: a Low Latency Network Architecture,” 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Sep. 19-21, 2012, 2 pages, IEEE, Bucharest, Romania.
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF.
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia.
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE.
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China.
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE.
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China.
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA.
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada.
Non-Published Commonly Owned U.S. Appl. No. 17/351,327, filed Jun. 18, 2021, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/351,342, filed Jun. 18, 2021, 47 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/351,345, filed Jun. 18, 2021, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/384,735, filed Jul. 24, 2021, 62 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/384,736, filed Jul. 24, 2021, 63 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/384,738, filed Jul. 24, 2021, 62 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,517, filed Jan. 6, 2022, 49 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,519, filed Jan. 6, 2022, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,520, filed Jan. 6, 2022, 50 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,522, filed Jan. 6, 2022, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,523, filed Jan. 6, 2022, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,524, filed Jan. 6, 2022, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/569,526, filed Jan. 6, 2022, 27 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/574,225, filed Jan. 12, 2022, 56 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/574,236, filed Jan. 12, 2022, 54 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/695,264, filed Mar. 15, 2022, 28 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/735,029, filed May 2, 2022, 36 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/737,933, filed May 5, 2022, 30 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/833,555 with similar specification, filed Jun. 6, 2022, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/850,112, filed Jun. 27, 2022, 41 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/943,147, filed Sep. 12, 2022, 42 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group.
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India.
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons.
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt.
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada.
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA.
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE.
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA.
Author Unknown, “VeloCloud Administration Guide: VMware SD-WAN by VeloCloud 3.3,” Month Unknown 2019, 366 pages, VMware, Inc., Palo Alto, CA, USA.
Non-Published Commonly Owned U.S. Appl. No. 18/137,584, filed Apr. 21, 2023, 57 pages, VMware, Inc.
Funabiki, Nobuo, et al., “A Frame Aggregation Extension of Routing Algorithm for Wireless Mesh Networks,” 2014 Second International Symposium on Computing and Networking, Dec. 10-12, 2014, 5 pages, IEEE, Shizuoka, Japan.
Non-Published Commonly Owned U.S. Appl. No. 18/197,090, filed May 14, 2023, 36 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/211,568, filed Jun. 19, 2023, 37 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/102,685, filed Jan. 28, 2023, 124 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/102,687, filed Jan. 28, 2023, 172 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/102,688, filed Jan. 28, 2023, 49 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/102,689, filed Jan. 28, 2023, 46 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/222,864, filed Jul. 17, 2023, 350 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/222,868, filed Jul. 17, 2023, 22 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/224,466, filed Jul. 20, 2023, 56 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 18/235,879, filed Aug. 20, 2023, 173 pages, VMware, Inc.
Related Publications (1)
Number Date Country
20230396670 A1 Dec 2023 US