Routing meshes for facilitating routing through an SD-WAN

Information

  • Patent Grant
  • 11381499
  • Patent Number
    11,381,499
  • Date Filed
    Friday, June 18, 2021
    2 years ago
  • Date Issued
    Tuesday, July 5, 2022
    a year ago
Abstract
Some embodiments of the invention provide a method of facilitating routing through a software-defined wide area network (SD-WAN) defined for an entity. A first edge forwarding node located at a first multi-machine site of the entity, the first multi-machine site at a first physical location and including a first set of machines, serves as an edge forwarding node for the first set of machines by forwarding packets between the first set of machines and other machines associated with the entity via other forwarding nodes in the SD-WAN. The first edge forwarding node receives configuration data specifying for the first edge forwarding node to serve as a hub forwarding node for forwarding a set of packets from a second set of machines associated with the entity and operating at a second multi-machine site at a second physical location to a third set of machines associated with the entity and operating at a third multi-machine site at a third physical location. The first edge forwarding node serves as a hub forwarding node to forward the set of packets from the second set of machines to the third set of machines.
Description
BACKGROUND

Today, software defined wide area networks (SD-WANs) provide secure access to applications hosted on clouds as well as enterprise datacenters. Typical SD-WAN deployments require a transit node through which the application flows in order to reach destinations (e.g., a cloud application involves branch-to-branch flows via gateways). However, certain challenges arise when handling critical application traffic, such as path impairments between source edge nodes and transit nodes, which can lead to application degradation. Additionally, critical applications that are of SOS nature are also subject to path instabilities and can end up with black out or brown out scenarios that lead to undesirable outcomes.


BRIEF SUMMARY

Some embodiments of the invention provide a method of routing packets through a software-defined wide area network (SD-WAN) defined for an entity. A first edge forwarding node, located at a first multi-machine site of the entity that is located at a first physical location and includes a first set of machines, serves as an edge forwarding node for the first set of machines by forwarding packets between the first set of machines and other machines associated with the entity via other forwarding nodes in the SD-WAN. The first edge forwarding node receives configuration data specifying for the first edge forwarding node to serve as a hub forwarding node for forwarding a set of packets from a second set of machines associated with the entity and operating at a second multi-machine site at a second physical location to a third set of machines associated with the entity and operating at a third multi-machine site at a third physical location. The first edge forwarding node then serves as a hub forwarding node to forward the set of packets to the third set of machines at the third multi-machine site.


In some embodiments, the first edge forwarding node receives the set of packets from the second edge forwarding node through a first tunnel between the first and second edge forwarding nodes, and forwards the packets to their next hop on their way to their destination via a second tunnel between the first edge forwarding node and the next hop. Before forwarding the set of packets through the second tunnel, in some embodiments, the first edge forwarding node removes a first tunnel header identified associated with the first tunnel and inserts a second tunnel header identifier associated with the second tunnel. In some embodiments, the first and second tunnels are secure tunnels (e.g., virtual private network (VPN) tunnels).


In some embodiments, the configuration data is received by the first edge forwarding node from a controller of the SD-WAN. The controller in some embodiments is a centralized controller, while in other embodiments it is a distributed controller with controller agents executing on devices in the SD-WAN (e.g., on the forwarding nodes), while in still other embodiments, the controller is a cloud gateway that performs the functionalities of a controller. Also, in some embodiments, the controller and the cloud gateway share controller functionalities.


The configuration data in some embodiments includes route records specifying multiple sets of routes in which the first edge forwarding node serves as just and edge forwarding element for the first multi-machine site and in which the first edge forwarding node serves as a hub forwarding element for other multi-machine sites, such as the second multi-machine site. In some embodiments, the controller provides different route records specifying different subsets of routes to different edge forwarding nodes in the SD-WAN.


The route records, in some embodiments, are generated by the controller based on routes identified in a routing graph (e.g., a routing-mesh topology model) generated by the controller that shows connections between forwarding nodes in the SD-WAN. In some embodiments, the controller uses the generated routing graph to identify edge forwarding nodes that can serve as hub forwarding nodes for the SD-WAN in order to provide alternate routes between source and destination forwarding nodes when the source forwarding nodes experience certain conditions while forwarding packets to other sites. For example, a particular forwarding node may be unable to connect to a hub forwarding node due to link degradation, congestion at the hub forwarding node because of another tenant, etc., according to some embodiments. In another example, the controller (or cloud gateway) in some embodiments can detect these conditions by pinging (e.g., sending ICMP messages) a hub forwarding node or set of hub forwarding nodes and detecting a slow response. In some embodiments, the controller provides the route records to the edge forwarding nodes proactively in order to allow the edge forwarding nodes to quickly react when experiencing the certain conditions. Alternatively, or conjunctively, the controller in some embodiments provides the route records reactively after detecting (e.g., by receiving a notification from the forwarding nodes) that a particular forwarding node is experiencing the certain conditions.


The conditions, in some embodiments, relate to a degraded operating state of hub forwarding nodes (i.e., transit nodes) and are associated with specified threshold values. In some embodiments, the degraded operating state of a hub forwarding node is caused by degradation of performance attributes such as latency, bandwidth, and throughput. The conditions and their associated threshold values are defined as policy-based routing (PBR) rules that are distributed to the forwarding nodes by the controller, according to some embodiments. In some embodiments, the forwarding nodes include metric generators for generating metrics to resolve these PBR rules and select alternate routes.


In some embodiments, each edge forwarding node in the SD-WAN is associated with a set of SD-WAN profiles that each identify shared sets of parameters. For example, an SD-WAN profile can identify a shared set of security parameters, service parameters, and/or policy parameters, in some embodiments. The controller, in some embodiments, uses these SD-WAN profiles while performing path searches on the routing graph to identify edge forwarding nodes in the routing graph that can serve in a secondary role as a hub forwarding node for the SD-WAN.


In some embodiments, the controller uses the routing graph to compute costs associated with multiple different paths through the routing graph. The computed costs, in some embodiments are link weight scores (i.e., cost scores) computed for different links between forwarding nodes in the routing graph. The weight scores, in some embodiments, are computed as weighted combinations of several computed and provide-specific values, such as a link's (1) computed delay value, (2) computed loss value, (3) provider network-connection cost, and (4) provider compute cost. In some embodiments, different links can have more than one associated cost. For example, the link cost associated with using an edge forwarding node in its primary role as an edge forwarding node is less than the link cost associated with using the edge forwarding node in its secondary role as a hub forwarding node, in some embodiments. The PBR rules used by the forwarding nodes are defined based on the computed weight scores, according to some embodiments (e.g., when latency is greater than N ms, use higher cost link).


The routing graph, in some embodiments, is a set of routing graphs that includes at least a first routing graph that does not include a direct link between the particular edge forwarding node and any edge forwarding node in a group of edge forwarding nodes associated with the entity, and at least a second routing graph that does include direct links between these edge forwarding nodes. In some embodiments, in order to identify edge forwarding nodes that can serve as hub forwarding nodes for the SD-WAN, the controller determines which routing graph results in better routing metrics than each of the other routing graphs in the set.


In some embodiments, in order to serve as a hub forwarding node to send the set of packets from the second set of machines to the third set of machines, the first edge forwarding node receives the packets from a second edge forwarding node of the second site through a first tunnel established between the first and second sites, and forwards the packets to a third edge forwarding node at the third site through a second tunnel between the first and third sites. In some embodiments, prior to forwarding the packets through the second tunnel, the first edge forwarding node removes from the packets a first tunnel header identifier associated with the first tunnel, inserts a second tunnel header identifier that is associated with the second tunnel, and forwards the packets to the third edge forwarding node.


The first edge forwarding node, in some embodiments, serves as the hub forwarding node for only a temporary period of time in order to forward the set of packets. In some embodiments, the first edge forwarding node does not continue to serve as a hub forwarding node for other communication sessions between the second and third sets of machines at the second and third sites, while in other embodiments, the first edge forwarding node serves as a hub forwarding node for all or some communication sessions between the second and third sites, as well as for potentially other sites of the entity.


In some embodiments, the first, second, and third edge forwarding nodes serve as spoke nodes in a hub-spoke architecture that uses a designated hub forwarding node located at a datacenter site associated with the entity. Accordingly, after the first edge forwarding node starts to operate as a hub forwarding node for the second site, in some embodiments, the SD-WAN has two hubs that include the first hub at the first multi-machine site (e.g., also referred to herein as a multi-user compute site) for the second multi-machine site and the second hub at the datacenter site for multiple edge forwarding nodes at multiple multi-machine sites of the entity. In some embodiments, the first edge forwarding node serves as hub forwarding node for a particular multi-machine site of the entity that establishes multiple tunnels with the first edge forwarding node, each tunnel used for a communication session between a machine at the particular multi-machine site and a machine at another multi-machine site of the entity.


The first multi-machine site of the entity, in some embodiments, is a first branch site of multiple branch sites of the entity, in some embodiments, and the first physical location is one of multiple geographically dispersed physical locations. Branch sites (e.g., multi-user compute sites), in some embodiments, are locations that have multiple user computes and/or other user-operated devices and serve as source computers and devices for communicating with other computers and devices at other sites (e.g., other branch sites, datacenter sites, etc.). The branch sites, in some embodiments, can also include servers that are not operated by users. In some embodiments, the second multi-machine site is a multi-tenant datacenter, such as a Software as a Service (SaaS) provider's datacenter. When the multi-tenant datacenter is a SaaS provider's datacenter, in some embodiments, the second edge forwarding node is a multi-tenant gateway forwarding node.


In some embodiments, the edge forwarding nodes associated with the SD-WAN can include an edge forwarding node associated with a branch site of the SD-WAN, a gateway forwarding node for a private datacenter, a multi-tenant gateway forwarding node associated with a public cloud, a multi-tenant gateway forwarding node associated with a SaaS provider cloud, and a hub forwarding node that provides connectivity between spoke edge forwarding nodes in the hub-and-spoke configuration of the SD-WAN.


The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, the Detailed Description, the Drawings, and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, the Detailed Description, and the Drawings.





BRIEF DESCRIPTION OF FIGURES

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.



FIG. 1 illustrates an example of a virtual network that is created for a particular entity using a hub that is deployed in a public cloud datacenter of a public cloud provider, according to some embodiments.



FIG. 2 illustrates an example of a virtual network in which a particular edge forwarding node has been designated as a hub forwarding node to facilitate a communications session between two edge forwarding nodes, according to some embodiments.



FIG. 3 illustrates a process performed by a forwarding node in a virtual network when attempting to establish a communications session with a particular destination, according to some embodiments.



FIG. 4 illustrates a process performed by an edge forwarding node at a branch site, in some embodiments, when attempting to establish communications with a destination.



FIG. 5 illustrates an example of a virtual network in which a particular edge forwarding node has been designated as a hub forwarding node to facilitate a communications session between a particular edge forwarding node and a SaaS datacenter, according to some embodiments.



FIG. 6 illustrates a process performed by a forwarding node in a virtual network that acts as a hub forwarding node to facilitate a communications session between a particular source and a particular destination, according to some embodiments.



FIG. 7 illustrates an example of a virtual network in which a particular edge forwarding node has been designated as a hub forwarding node for other edge forwarding nodes in the virtual network, according to some embodiments.



FIG. 8 illustrates a process performed by a controller or controller cluster in a virtual network to identify potential edge forwarding nodes able to serve as hub forwarding nodes to provide optimal routing for other forwarding nodes in the virtual network, according to some embodiments.



FIG. 9 illustrates an example in which a particular edge forwarding node in a first SD-WAN has been designated as a hub forwarding node to facilitate a communications session between another edge forwarding node in the first SD-WAN and an edge forwarding node in a second SD-WAN, according to some embodiments.



FIG. 10 illustrates a process performed by a controller or controller cluster in a virtual network to identify potential edge forwarding nodes able to serve as hub forwarding nodes to provide optimal routing for other forwarding nodes in the virtual network in response to detected failed communications attempts by another forwarding node in the virtual network, according to some embodiments.



FIGS. 11A-11G illustrate an example of a routing graph generated by a controller to identify all possible routes between a source and destination, according to some embodiments.



FIG. 12 illustrates an example of two routing graphs generated for an SD-WAN that treat one edge node differently.



FIG. 13 conceptually illustrates a computer system with which some embodiments of the invention are implemented.





DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.


Some embodiments of the invention provide a method of routing packets through a software-defined wide area network (SD-WAN) defined for an entity by augmenting the roles of SD-WAN devices. Examples of roles for SD-WAN devices include SD-WAN edge forwarding nodes, SD-WAN hub forwarding nodes, and SD-WAN gateway forwarding nodes. In some embodiments, an SD-WAN device's role can include a primary function and a secondary function, where the secondary function is either always there, or requested on demand. In some embodiments, these roles are based on context. For example, a controller or controller cluster in some embodiments can associate SD-WAN forwarding nodes with heuristic metrics, such as geolocation, number of paths to a hub, path metrics, etc.


In its primary function in its role as an edge forwarding node, for example, a first SD-WAN edge forwarding node that is located at a first multi-machine site (e.g., also referred to herein as a multi-user compute site) of an entity that is located at a first physical location and includes a first set of machines, can forward packets from the first set of machines operating at the first multi-machine site to other forwarding nodes in the SD-WAN for forwarding to other machines associated with the entity. Based on configuration data (i.e., route records) from the controller, the first SD-WAN edge forwarding node can subsequently operate in its secondary function as a hub for the second multi-machine site and relay the set of packets from the second set of machines operating at the second multi-machine site to a third set of machines associated with the entity.



FIG. 1 illustrates an example of a virtual network 100 that is created for a particular entity using SD-WAN forwarding elements deployed at branch sites, datacenters, and public clouds. Examples of public clouds are public clouds provided by Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, etc., while examples of entities include a company (e.g., corporation, partnership, etc.), an organization (e.g., a school, a non-profit, a government entity, etc.), etc.


In FIG. 1, the SD-WAN forwarding elements include cloud gateway 105 and SD-WAN forwarding elements 130, 132, 134, 136. The cloud gateway (CGW) in some embodiments is a forwarding element that is in a private or public datacenter 110. The CGW 105 in some embodiments has secure connection links (e.g., tunnels) with edge forwarding elements (e.g., SD-WAN edge forwarding elements (FEs) 130, 132, 134, and 136) at the particular entity's multi-machine sites (e.g., SD-WAN edge sites 120, 122, and 124), such as multi-user compute sites (e.g., branch offices or other physical locations having multi user computers and other user-operated devices and serving as source computers and devices for requests to other machines at other sites), datacenters (e.g., locations housing servers), etc. These multi-machine sites are often at different physical locations (e.g., different buildings, different cities, different states, etc.).


Four multi-machine sites 120-126 are illustrated in FIG. 1, with three of them being branch sites 120-124, and one being a datacenter 126. Each branch site is shown to include an edge forwarding node 130-134, while the datacenter site 126 is shown to include a hub forwarding node 136. The datacenter SD-WAN forwarding node 136 is referred to as a hub node because in some embodiments this forwarding node can be used to connect to other edge forwarding nodes of the branch sites 120-124. The hub node in some embodiments uses or has one or more service engines to perform services (e.g., middlebox services) on packets that it forwards from one branch site to another branch site. In some embodiments, when an edge forwarding node takes on the role of a hub forwarding node (e.g., based on route records provided by the controller cluster), the controller cluster provides service rules to the edge forwarding node to enable this node, or a service engine used by this node, to perform service operations that are to be performed by the hub forwarding node. The hub node also provides access to the datacenter resources 156, as further described below.


Each edge forwarding element (e.g., SD-WAN edge FEs 130-134) exchanges packets with one or more cloud gateways 105 through one or more connection links 115 (e.g., multiple connection links available at the edge forwarding element). In some embodiments, these connection links include secure and unsecure connection links, while in other embodiments they only include secure connection links. As shown by edge node 134 and gateway 105, multiple secure connection links (e.g., multiple secure tunnels that are established over multiple physical links) can be established between one edge node and a gateway.


When multiple such links are defined between an edge node and a gateway, each secure connection link in some embodiments is associated with a different physical network link between the edge node and an external network. For instance, to access external networks, an edge node in some embodiments has one or more commercial broadband Internet links (e.g., a cable modem, a fiber optic link) to access the Internet, an MPLS (multiprotocol label switching) link to access external networks through an MPLS provider's network, a wireless cellular link (e.g., a 5G LTE network), etc. In some embodiments, the different physical links between the edge node 134 and the cloud gateway 105 are the same type of links (e.g., are different MPLS links).


In some embodiments, one edge forwarding node 130-134 can also have multiple direct links 115 (e.g., secure connection links established through multiple physical links) to another edge forwarding node 130-134, and/or to a datacenter hub node 136. Again, the different links in some embodiments can use different types of physical links or the same type of physical links. Also, in some embodiments, a first edge forwarding node of a first branch site can connect to a second edge forwarding node of a second branch site (1) directly through one or more links 115, (2) through a cloud gateway or datacenter hub to which the first edge forwarding node connects through two or more links 115, or (3) through another edge forwarding node of another branch site that can augment its role to that of a hub forwarding node, as will be described in more detail below. Hence, in some embodiments, a first edge forwarding node (e.g., 134) of a first branch site (e.g., 124) can use multiple SD-WAN links 115 to reach a second edge forwarding node (e.g., 130) of a second branch site (e.g., 120), or a hub forwarding node 136 of a datacenter site 126.


The cloud gateway 105 in some embodiments is used to connect two SD-WAN forwarding nodes 130-136 through at least two secure connection links 115 between the gateway 105 and the two forwarding elements at the two SD-WAN sites (e.g., branch sites 120-124 or datacenter site 126). In some embodiments, the cloud gateway 105 also provides network data from one multi-machine site to another multi-machine site (e.g., provides the accessible subnets of one site to another site). Like the cloud gateway 105, the hub forwarding element 136 of the datacenter 126 in some embodiments can be used to connect two SD-WAN forwarding nodes 130-134 of two branch sites through at least two secure connection links 115 between the hub 136 and the two forwarding elements at the two branch sites 120-124.


In some embodiments, each secure connection link between two SD-WAN forwarding nodes (i.e., CGW 105 and edge forwarding nodes 130-136) is formed as a VPN tunnel between the two forwarding nodes. In this example, the collection of the SD-WAN forwarding nodes (e.g., forwarding elements 130-136 and gateways 105) and the secure connections 115 between the forwarding nodes forms the virtual network 100 for the particular entity that spans at least the public or private cloud datacenter 110 to connect the branch and datacenter sites 120-126.


In some embodiments, secure connection links are defined between gateways in different public cloud datacenters to allow paths through the virtual network to traverse from one public cloud datacenter to another, while no such links are defined in other embodiments. Also, in some embodiments, the gateway 105 is a multi-tenant gateway that is used to define other virtual networks for other entities (e.g., other companies, organizations, etc.). Some such embodiments use tenant identifiers to create tunnels between a gateway and edge forwarding element of a particular entity, and then use tunnel identifiers of the created tunnels to allow the gateway to differentiate packet flows that it receives from edge forwarding elements of one entity from packet flows that it receives along other tunnels of other entities. In other embodiments, gateways are single-tenant and are specifically deployed to be used by just one entity.



FIG. 1 illustrates a cluster of controllers 140 that serve as a central point for managing (e.g., defining and modifying) configuration data that is provided to the edge nodes and/or gateways to configure some or all of the operations. In some embodiments, this controller cluster 140 is in one or more public cloud datacenters, while in other embodiments it is in one or more private datacenters. In some embodiments, the controller cluster 140 has a set of manager servers that define and modify the configuration data, and a set of controller servers that distribute the configuration data to the edge forwarding elements (FEs), hubs and/or gateways. In some embodiments, the controller cluster 140 directs edge forwarding elements and hubs to use certain gateways (i.e., assigns a gateway to the edge forwarding elements and hubs). In some embodiments, some or all of the controller cluster's functionality is performed by a cloud gateway (e.g., cloud gateway 105).


The controller cluster 140 also provides next hop forwarding rules and load balancing criteria in some embodiments. As mentioned above, the controller cluster 140 also provides service rules to edge forwarding nodes that can serve as hub forwarding nodes, in some embodiments, in order to enable these nodes, or service engines used by these nodes, to perform service operations on the packets that are to be performed by the hub forwarding node. In some embodiments, the controller cluster provides the configuration data (e.g., route records, forwarding rules, etc.) to the edge forwarding nodes proactively in order to allow the edge forwarding nodes to quickly react when experiencing certain conditions that necessitate using alternate routes. Alternatively, or conjunctively, the controller in some embodiments provides the configuration data reactively after detecting (e.g., by receiving a notification from the forwarding nodes) that a particular forwarding node is experiencing the certain conditions.


The conditions, in some embodiments, relate to degraded operational states of hub forwarding nodes and are associated with threshold values defined in the forwarding rules (e.g., policy-based routing (PBR) rules). In some embodiments, the degraded operational states of hub forwarding nodes can be due to issues with latency, bandwidth, and/or throughput. For example, a forwarding rule may specify that a first edge forwarding node at a first site should use a second edge forwarding node at a second site to forwarding a set of packets to a third site when the throughput of a designated hub forwarding node used by the first edge forwarding node does not fall within a threshold value range defined in the forwarding rule.


In some embodiments, the controller detects the degraded operational state of the hub forwarding node and signals to the first edge forwarding node to use an alternate route through the second edge forwarding node, while in other embodiments, the first edge forwarding node automatically uses the second edge forwarding node as a hub according to the route records. FIGS. 3, 4, 6, 8, and 10 illustrate processes for facilitating routing by designating edge forwarding nodes as hub forwarding nodes in some embodiments, and will be described below with reference to FIGS. 2, 5, 7, and 9.



FIG. 2 illustrates another example of a virtual network 200 in some embodiments that is created for a particular entity using SD-WAN forwarding elements deployed at branch sites, datacenters, and public clouds. Like the virtual network 100, the SD-WAN forwarding elements of the virtual network 200 include SD-WAN edge forwarding nodes 230-234, cloud gateway 205, and SD-WAN hub forwarding node 236. The cloud gateway 205 in some embodiments is a forwarding element that is in a private or public datacenter 210. In some embodiments, the cloud gateway 205 has secure connection links (e.g., tunnels) with edge forwarding elements at the entity's different branch sites and datacenters. In this example, the edge forwarding nodes 230-234 are located at respective branch sites 220-224, while the hub forwarding node 236 is located at the datacenter 226.


While the cloud gateway 105 and hub forwarding node 236 can provide forwarding services for the branch sites 220-224, in some embodiments, these connections experience issues sometimes caused by heavy traffic loads coming from other sites in the SD-WAN. Accordingly, the edge forwarding nodes 230-234 in some embodiments are requested or instructed to serve as hub forwarding nodes to facilitate communication sessions between other sites in the SD-WAN.



FIG. 3 illustrates a process performed by an edge forwarding node at a branch site, in some embodiments, when attempting to establish communications with a destination (e.g., any destination device based on routing). The process 300 starts, at 305, by attempting to establish a communications session with a particular forwarding node at a particular site via one or more hubs or gateways. For example, in the virtual network 200, the edge forward node 230 at the branch site 220 can attempt to communicate with the edge forwarding node 232 at the branch site 222 through the cloud gateway 205 and the hub forwarding node 236 via connection link 260.


Next, at 310, the edge forwarding node determines whether the attempt to establish the communications session failed. In some embodiments, for example, when a different branch site of the same or different entity/tenant is sending large amounts of data via the hub or gateway forwarding nodes, the connections (e.g., links) with other branch sites become less reliable (i.e., degraded). Also, in some embodiments, the attempts to connect fail because the hub or gateway forwarding nodes may be experiencing scheduled or unscheduled downtime (e.g., for maintenance).


When the edge forwarding node determines at 310 that the attempt did not fail, the process transitions to 315 to send communications (i.e., packets) via the successful route. The process then ends. Otherwise, when the edge forwarding node determines at 310 that the attempt did fail, the process transitions to 320 to determine whether a threshold number of attempts has been exceeded. In some embodiments, the threshold number of attempts is predefined by a user (e.g., network administrator), and implemented as a fault tolerance policy, or as a PBR rule, as will be described below for FIG. 4.


When the edge forwarding node determines that the threshold of failed attempts has not been exceeded, the process returns to 305 to continue to attempt to establish the communications session via hub and gateway forwarding nodes. Alternatively, when the edge forwarding node determines at 320 that the threshold number of failed attempts has been exceed, the process transitions to 325 to establish a communications session with an intervening edge forwarding node at another branch site. For example, the edge forwarding node 230 can establish a communications session with the edge forwarding node 234 serving as a hub for a communications session between the edge forwarding node 230 and the edge forwarding node 232.


Next, at 330, the edge forwarding node starts forwarding packets to the intervening edge forwarding node, which is now serving as a hub forwarding node, for delivery to the particular forwarding node at the particular site. For example, in the virtual network 200, the edge forwarding node 230 is shown sending packets 275 along the route 270, which passes through the edge forwarding node 234 for delivery to the edge forwarding node 232. The process then ends.



FIG. 4 illustrates another process performed by an edge forwarding node at a branch site, in some embodiments, when attempting to establish communications with a destination (e.g., any destination device based on routing). The process 400 starts, at 410, when the edge forwarding node of a branch site receives a packet (e.g., from a source machine at the branch site) for forwarding to a second site through the SD-WAN.


Next, the process identifies, at 420, a set of one or more PBR rules that are applicable to the packet and that identify two next hops for two routes to the destination, with one route using a designated hub forwarding node at a datacenter site and the other route using another edge forwarding node at another site. In some embodiments, the edge forwarding node identifies applicable PBR rules based on five tuple identifiers (e.g., source and destination address, source and destination port number, and protocol) associated with the packet, as well as based on performance attributes of the designated hub forwarding node (e.g., latency, bandwidth, and throughput).


After identifying the set of PBR rules, the process evaluates, at 430, a condition specified by the set of PBR rules to select one of the next hops identified by the set of PBR rules. For example, the PBR rules, in some embodiments, specify threshold values for the performance attributes. For example, a PBR rule may specify that when the designated hub forwarding node has a latency greater than N ms, the other edge forwarding node serving as a hub forwarding node should be the next hop for forwarding the packet. In another example, a PBR rule may specify that when the edge forwarding node experiences greater than N number of failed attempts to connect to the designated hub forwarding node, the other edge forwarding node serving as a hub forwarding node should be the next hop for forwarding the packet. The process then forwards, at 440, the received packet along to the selected next hop. Following 440, the process 400 ends.



FIG. 5 illustrates a virtual network 500 that includes a controller cluster 540, multiple branch sites (e.g., 520, 522, and 524), each branch site having a respective SD-WAN edge forwarding node (e.g., 530, 532, and 534) and a set of resources (e.g., 550, 552, and 554). The virtual network 500 also includes a datacenter 528 (public or private) with resources 558 and an SD-WAN hub forwarding node 538, a cloud gateway 505 in a public cloud 510, and a SaaS datacenter 526 with resources 556 and an SD-WAN gateway forwarding node 536. FIG. 5 will be described below with reference to FIG. 6.



FIG. 6 illustrates a process 600 performed by an edge forwarding node of a branch site serving as a hub forwarding node to relay communications between other sites internal and external to the virtual network in some embodiments. The process 600 starts, at 610, when an edge forwarding node (i.e., a first edge forwarding node) of a branch site receives instructions from a controller to serve as a hub forwarding node to relay a set of packets from a particular forwarding node at a particular site to a destination. For example, in the virtual network 500, the edge forwarding node 530 at the branch site 520 can establish a communications session with the edge forwarding node 534 at the branch site 524 in order to have the edge forwarding node 534 serve as a hub for relaying a set of packets from the edge forwarding node 530 to the gateway forwarding node 536 following a number of failed attempts to communicate through the cloud gateway 505, in some embodiments. In some embodiments, the instructions include route records generated by the controller based on routes identified in one or more routing graphs for the SD-WAN.


Following receipt of the instructions at 610, the edge forwarding node establishes, at 620, a first tunnel with the particular forwarding node of the particular site and a second tunnel with a next hop on the path to the destination in order to relay the set of packets from the particular forwarding node to the destination. For example, the edge forwarding node 532 can establish a tunnel with the edge forwarding node 530 via the link 570, and a tunnel with the gateway forwarding node 536 (i.e., destination) on the link 572.


The edge forwarding node next receives, at 630, packets from the particular forwarding node along the first tunnel, removes an identifier of the first tunnel from the packets, and inserts an identifier of the second tunnel. The edge forwarding node then forwards, at 640, the packets having the identifier of the second tunnel through the second tunnel to the destination. For example, the edge forwarding node 534 can receive packets from the edge forwarding node 530 and forward the packets to the destination gateway forwarding node 536 along the path illustrated by the dashed line 574.


Next, at 650, the edge forwarding node determines whether there are additional packets in the set of packets to be forwarded. When the edge forwarding node determines that there are additional packets to forward in the communications session (i.e., the session has not yet terminated), the process returns to 630 to receive the packets from the particular forwarding node.


Otherwise, when the edge forwarding node determines there are no additional packets to forward (i.e., the communications session has terminated), the process transitions to 660 to terminate the first and second tunnels and cease serving in the role as a hub according to the received instructions. For example, in some embodiments, the edge forwarding node operating in a hub role is configured to only remain in that role as the hub for the length of time it takes to relay the set of packets for which the tunnel was initially established, while in other embodiments, the edge forwarding node continues to operate in the hub role for a particular set of communications sessions, or in still other embodiments, the edge forwarding node operates in the hub role until it receives additional instructions (e.g., from the controller) to stop. Following 660, the process ends.



FIG. 7 illustrates another example of a virtual network in some embodiments. The virtual network 700 includes a controller cluster 740, a set of branch sites (e.g., 720, 722, and 724) that each include a set of resources (e.g., 750, 752, and 754) and an SD-WAN edge forwarding node (e.g., 730, 732, and 734), and a datacenter 728 that includes resources 758 and a hub forwarding node 738. The hub forwarding node 738 at the datacenter 728 serves to connect each of the branch sites 720-724 to the gateway forwarding node 736 of the external SaaS datacenter 726 to allow the branch sites to access resources 756 of the SaaS datacenter. FIG. 7 will be described in further detail below with reference to FIG. 8.



FIG. 8 illustrates a process performed by a controller or controller cluster in some embodiments. The process 800 is performed as a reactive process in some embodiments (i.e., in response to detection of poor conditions in the SD-WAN), while in other embodiments, the process is a proactive process (i.e., performed prior to any detection of poor conditions). The process 800 starts at 810 when the controller generates a routing graph (e.g., routing-mesh topology model) based on profile settings of SD-WAN forwarding nodes in order to identify available routes between devices in and out of the SD-WAN. For example, the controller cluster 740 may identify all of the connections 760 between the branch sites 720-724 and the datacenter 728, as well as the connections 765 between the branch sites. An example routing graph will be described below with reference to FIGS. 11A-11G.


Next, the controller analyzes, at 820, the routing graph to identify spoke SD-WAN edge forwarding nodes. In the virtual network 700, the controller cluster 740 may identify each of the edge forwarding nodes 730-734 as spokes around the hub forwarding node 738. Based on the analysis, the controller determines, at 830, that a particular spoke SD-WAN edge forwarding node should serve as an SD-WAN hub forwarding node for a group of SD-WAN edge forwarding nodes. For example, though each of the edge forwarding nodes 730-734 have been identified as spokes, the controller 740 in some embodiments may determine that the optimal route for the edge forwarding nodes 730 and 734 (e.g., in case these nodes are unable to reach the hub forwarding node 738 directly) would be through the edge forwarding node 732 as illustrated by the bold routes 770 and 775.


After determining that the particular spoke edge forwarding node should serve as a hub forwarding node for a group of edge forwarding nodes, the controller instructs, at 840, the particular spoke edge forwarding node to serve as a hub forwarding node for the group of SD-WAN edge forwarding nodes, and instructs the group to use the particular spoke edge forwarding node as a hub forwarding node. For example, the controller cluster 740 can use the connections 780 to send respective instructions to each of the edge forwarding nodes 730-734. In some embodiments, the controller instructs the group of edge forwarding nodes to use the designated hub forwarding node only for a specified amount of time (e.g., for a particular set of communications sessions).


The instructions, in some embodiments, include route records generated by the controller that identify different paths using the particular spoke edge forwarding node as a hub forwarding node. In some embodiments, the route records include two different sets of route records generated based on first and second routing graphs, with the first set including routes where the particular spoke edge forwarding node only serves as an edge forwarding node, and the second set including routes where the particular spoke edge forwarding node serves as an edge forwarding node and as a hub forwarding node. Alternatively, or conjunctively, the route records in some embodiments include two different sets of route records based one routing graph generated by the controller, with the first set of route records further based on a first set of routes associated with a first cost when using the particular spoke edge forwarding node as an edge forwarding node, and the second set of route records further based on a second set of routes associated with a second cost when using the particular spoke edge forwarding node as a hub forwarding node. In some embodiments, the controller also sends with the route records a list of nodes identified in the routing graph as nodes that can serve as hubs to the forwarding nodes in the SD-WAN. After providing the instructions to the particular spoke edge forwarding node, the process 800 ends.



FIG. 9 illustrates an example of a communications session between sites in different SD-WANs that is relayed by an edge forwarding node. The first SD-WAN 901, includes a set of branch sites (e.g., 920, 921, and 922) each with a set of resources (e.g., 950, 951, and 952) and an edge forwarding node (e.g., 930, 931, and 932), as well as a cloud gateway 905 in a public cloud 910. The second SD-WAN 902 includes a pair of branch sites (e.g., 924 and 925) each with a set of resources (e.g., 954 and 955) and an edge forwarding node (e.g., 934 and 935). The first and second SD-WANs 901 and 902 are connected by a public datacenter 926 that includes a set of resources 956 and a hub forwarding node 936. FIG. 9 will be further described below with reference to FIG. 8.



FIG. 10 illustrates a process performed by a controller or controller cluster in some embodiments to facilitate routing between forwarding nodes internal and external to an SD-WAN. The process 1000 starts at 1010 when the controller detects degraded performance at a designated hub forwarding node between a source site and a destination site. For example, a controller cluster (not pictured) for the SD-WAN 901 may detect that the performance of the cloud gateway 905, and/or the link 960 between the edge forwarding node 931 and the cloud gateway 905, is degraded. In some embodiments, the controller cluster detects such network events by receiving notifications from the different forwarding elements (e.g., edge forwarding node 931, cloud gateway 905, etc.) regarding the network events.


Next, the controller generates, at 1020, a routing graph (i.e., the routing graph generated in the process 800) to perform path search to identify alternate routes between the source and destination sites through the SD-WAN that use a particular edge forwarding node at a particular site as a next hop (i.e., instead of the designated hub forwarding node) for the set of packets. For example, a controller cluster (not pictured) for the SD-WAN 901 may identify the edge forwarding node 930 as a spoke edge forwarding node able to serve as a hub for a communications session between the edge forwarding node 931 in the SD-WAN 901 and a destination, such as the edge forwarding node 934 of the branch site 924 in the SD-WAN 902.


The controller cluster then selects, at 1030, the optimal route from the identified alternate routes for forwarding the set of packets from the source site to the destination site. In some embodiments, each route has an associated cost, and the selected optimal route is the route having the lowest cost, while in other embodiments, the optimal route is not the route having the lowest cost.


The controller cluster instructs, at 1040, the particular edge forwarding node used as a next hop in the selected route to serve as a hub forwarding node to forward the set of packets from the source site to the destination site. For example, a controller cluster (not pictured) can instruct the edge forwarding node 930 to serve as a hub for the edge forwarding node 931 in order for the edge forwarding node 931 to forward the set of packets to the edge forwarding node 934 in the second SD-WAN 902, such that the packets are forwarded from the edge forwarding node 930 serving as a hub, to the hub forwarding node 936 of the datacenter 926, and finally to the edge forwarding node 934.


Additionally, the controller cluster instructs, at 1050, an edge forwarding node at the source site to use the particular edge forwarding node at the particular site as a next hop for forwarding the set of packets. In some embodiments, the controller cluster instructs the edge forwarding node to use the particular edge forwarding node as a next hop only for the set of packets, while in other embodiments, the controller cluster instructs the edge forwarding node to use the particular edge forwarding node as a next hop for additional sets of packets. The process then ends.


In some embodiments, the cloud gateway 905 performs some or all of the functionalities of the controller cluster described above. For example, in some embodiments, the cloud gateway is responsible for collecting network event-related data from other forwarding elements connected by the SD-WAN and provides this data to the controller cluster, while in other embodiments, the cloud gateway collects the data, analyzes the data to detect any problems, and provides solutions (e.g., by providing alternate routes for forwarding packets).


While the processes in FIGS. 3-10 are described with reference to the elements in FIGS. 2-9, the particular destination for each of these processes can be any of an SD-WAN edge forwarding node at a branch site, an SD-WAN gateway forwarding node for a private datacenter, a multi-tenant SD-WAN gateway forwarding node associated with a public cloud, a multi-tenant SD-WAN gateway forwarding node associated with a SaaS provider cloud, or an SD-WAN hub forwarding node that provides connectivity between spoke SD-WAN edge forwarding nodes in a hub-and-spoke configuration of the SD-WAN.


As mentioned above, the controller or controller cluster in some embodiments proactively or reactively creates and examines routing graphs in order to determine routes for packets between SD-WAN edge forwarding nodes. In some embodiments, the controller generates one or more routing graphs to perform path searches to identify routes through the SD-WAN forwarding nodes (e.g., edge nodes, hub nodes, cloud gateway nodes, etc.) between SD-WAN sites that are sources and destinations of packet flows. In some embodiments, the controller also provides a list of forwarding nodes that can be used as hub forwarding nodes to each forwarding node in the SD-WAN. Additional details regarding generating routing graphs and performing path searches on those routing graphs for identifying paths through the SD-WAN can be found in U.S. Pat. No. 11,005,684.



FIGS. 11A-11G illustrate an example of a routing graph generated by a controller, along with a subset of potential desirable paths transposed on the routing graph from which the controller can select one or more edge forwarding nodes to operate in a secondary function as hub forwarding nodes. While the routing graph generation and analyses are described below as being performed by the controller, some or all of these functionalities, in some embodiments, are instead performed by the cloud gateway.



FIG. 11A illustrates a routing graph 1100 generated by a controller to identify nodes in a virtual network and the connections between them. The routing graph 1100 includes five edge forwarding nodes (e.g., 1110, 1112, 1114, 1116, and 1118), a gateway forwarding node 1120, and a hub forwarding node 1122. Additionally, the routing graph includes a node 1138 representing an external corporate compute node (e.g., a branch office or datacenter) or SaaS provider accessible through edge forwarding node 1118, and a set of nodes 1130, 1132, 1134, and 1136 representing machines or groups of machines at branch sites served by the edge forwarding nodes 1110-1118. For example, the nodes 1130 and 1132 represent machines that are accessible through edge forwarding node 1110, node 1134 represents machines that are accessible through edge forwarding node 1114, and node 1136 represents machines that are accessible through edge forwarding node 1116.


The routing graph 1100 also illustrates the connections between these forwarding nodes, including links 1140 between edge forwarding nodes, links 1142 between edge forwarding nodes and the gateway forwarding node 1120, links 1144 between edge forwarding nodes and the hub forwarding node 1122, and a link 1146 between the gateway forwarding node 1120 and hub forwarding node 1122. In some embodiments, the controller removes any identified bad links before generating the routing graph 1100.


As described in relation to the process 800, the controller can analyze the routing graph to identify spoke SD-WAN edge forwarding nodes, such as spoke edge forwarding nodes 1110-1118, and determine whether any of the identified spoke edge forwarding nodes should serve as hub forwarding nodes for other edge forwarding nodes. For example, the edge forwarding node 1112 has a connection via a link 1144 to the hub forwarding node 1122, and thus the edge forwarding node 1112 can act as a hub forwarding node for the edge forwarding node 1110 if the connection link 1142 between edge forwarding node 1110 and gateway forwarding node 1120 becomes unreliable. Each node that exists as a hub or spoke in the routing graph 1100 is also illustrated with a cost label indicative of the cost of using each respective node in their primary role (e.g., edge forwarding node 1110 has an associated cost 1 (“E1−C1”), and edge forwarding node 1116 has an associated cost 1 (“E4−C1”)).


In some embodiments, for one or more links in the routing graph, the controller computes a link weight score (cost score) as a weighted combination of several computed and provider-specific values. In some embodiments, the weight score is a weighted combination of the link's (1) computed delay value, (2) computed loss value, (3) provider network-connection cost, and (4) provider compute cost. In some embodiments, the provider compute cost is accounted for as the managed forwarding nodes connected by the link are machines (e.g., virtual machines or containers) that execute on host computers in the public cloud datacenter(s). These weight scores, in some embodiments, can be used to determine which edge forwarding nodes would be best suited to serve in their secondary function as hub forwarding nodes.


For example, FIG. 11B illustrates the routing graph 1100 with weight scores added to the links for use by the controller to determine the most desirable routes between a source node (e.g., emphasized edge forwarding node 1110) and a destination node (e.g., emphasized gateway forwarding node 1136). For example, the link between edge forwarding node 1110 and gateway forwarding node 1120 has a weight value of L−C1 (i.e., link cost 1), while the link between the edge forwarding node 1110 and the edge forwarding node 1112 has a weight value of L−C2 (i.e., link cost 2). It can be assumed, in some embodiments, that the cost of a link between an edge forwarding node and a designated gateway (e.g., L−C1) under normal conditions is less than the cost of a link between a first edge forwarding node and a second edge forwarding node that is operating in a hub forwarding node role (e.g. L−C2).


In addition to the weight values associated with each link, and the initial cost scores for each of the nodes, edge forwarding nodes 1112, 1114, and 1118 include secondary cost scores representative of the cost of using each of these particular edge forwarding nodes in their secondary functions as hub forwarding nodes (e.g., edge forwarding node 1112 includes a secondary cost E2−H−C1). In some embodiments, it can be assumed that an edge forwarding node's cost score for when the node is operating in its primary function as an edge forwarding node is less than the cost score for when the edge forwarding node is operating in its secondary function as a hub forwarding node. In some such embodiments, it can also be assumed that under normal operating conditions, the cost score for when the edge forwarding node is operating in its secondary function as a hub forwarding node is greater than the cost score associated with a designated hub forwarding node.



FIG. 11C illustrates the routing graph 1100 over which a first desirable path between the edge forwarding node 1110 and the edge forwarding node 1116 is transposed, represented by the emphasized and labeled links. In this example, each of the forwarding nodes through which traffic would traverse has a cost associated with the primary function of the forwarding node (i.e., none of the edge forwarding nodes in this example are operating as hub forwarding nodes). Thus, the cost of using this particular path is less than the cost of other potential paths, in some embodiments.



FIG. 11D illustrates the routing graph 1100 over which a second desirable path between the edge forwarding node 1110 and the edge forwarding node 1116 is transposed. In this example, one edge forwarding node (i.e., edge forwarding node 1118) is operating as a hub forwarding node in order to pass traffic from the gateway 1120 to the edge forwarding node 1116.


The decision to augment the role of an edge forwarding node, in some embodiments, is based on a condition faced by another forwarding node that results in that other forwarding node being unable to forward traffic to an intended next hop. For example, a particular forwarding node may be unable to connect to a hub forwarding node due to link degradation, congestion at the hub forwarding node because of another tenant, etc., according to some embodiments. In another example, the controller (or cloud gateway) in some embodiments can detect these conditions by pinging (e.g., sending ICMP messages) a hub forwarding node or set of hub forwarding nodes and detecting a slow response.


In some embodiments, the condition faced by a forwarding node is associated with a specified threshold, such as bandwidth thresholds, connection attempt thresholds (i.e., the number of failed attempts by a forwarding node to connect to another forwarding node), response time thresholds (i.e., how quickly a forwarding node responds to an ICMP message), etc. For example, the decision to augment the role of the edge forwarding node 1118 so that it operates as a hub forwarding node is based on a threshold number of failed connection attempts being exceeded when the gateway forwarding node 1120 tries to connect to the hub forwarding node 1122, in some embodiments. As mentioned above, the failed attempts could be due to congestion caused by heavy traffic from other tenants that use the hub forwarding node 1122, in some embodiments.


As a result of the congestion (or another condition), the controller in some embodiments determines that the cost of using the hub forwarding node 1120 becomes much greater than the cost of using the edge forwarding node 1118 as a hub forwarding node to deliver the traffic to its destination. Alternatively, or conjunctively, the forwarding nodes that experience the conditions make their own alternate route selections using route records provided by the controller (or cloud gateway), according to some embodiments.


In some embodiments, the forwarding nodes make their selections according to policy-based routing (PBR) rules. In some such embodiments, the forwarding nodes include metric generators that generate metrics for resolving the PBR rules. For example, a PBR rule can specify for a source (e.g., a branch office in Los Angeles) that if the traffic destination is X (e.g., a branch office in San Francisco), then the next hop is Y (e.g., a branch office in Fresno) if Y's delay is within 80% of a specified ideal range, and otherwise, the next hop is Z (e.g., a branch office in Las Vegas). Thus, if the edge forwarding node located at the source site determines that Y's delay is not within the range, the edge forwarding node would use Z as its next hop.



FIG. 11E illustrates the routing graph 1100 over which a third desirable path between the edge forwarding node 1110 and the edge forwarding node 1116 is transposed. Like the example of FIG. 11D, this example includes one edge forwarding node, this time edge forwarding node 1112, that is operating as a hub forwarding node in order to pass traffic from the edge forwarding node 1110 to the hub forwarding node 1122 for eventual delivery to the destination 1116. As the gateway 1120 is a multi-tenant forwarding node like the hub forwarding node 1122, heavy traffic from another tenant could bog down the gateway forwarding node 1120, thus creating a need for an alternate route and off-setting the normally higher cost of using the edge forwarding node 1112 in lieu of the gateway 1120.



FIG. 11F illustrates the routing graph 1100 over which a fourth desirable path between the edge forwarding node 1110 and the edge forwarding node 1116 is transposed. This fourth path uses the secondary hub functionalities of both the edge forwarding node 1112 and the edge forwarding node 1118. Unlike the examples in FIGS. 11C-11E, the example path in FIG. 11F includes an additional node for the traffic to traverse. It can be deduced that the extra cost of traversing the extra node, in addition to the extra cost of two edge forwarding nodes operating in their secondary functionalities as hub forwarding nodes, is now less than the cost of using the direct link between edge forwarding node 1110 and the gateway 1120 plus the cost of traversing the hub forwarding node 1122, according to some embodiments.


Lastly, FIG. 11G illustrates the routing graph 1100 over which a fifth desirable path (and least desirable of the 5 illustrated) between the edge forwarding node 1110 and the edge forwarding node 1116 is transposed. In this example, two edge forwarding nodes (e.g., 1114 and 1118) are again operating as hub forwarding nodes.


In some embodiments, the cost of using the path illustrated in FIG. 11F may be equal to the path illustrated in FIG. 11G, and other means to determine the best path may be used in lieu of cost. For example, in some embodiments, the controller may associate forwarding nodes with heuristic metrics, such as geolocation, the number of paths to get to a hub, and other path metrics. In some embodiments, the path in FIG. 11F may be more desirable, and less expensive, than the path in FIG. 11G based on the potential for additional traffic to edge forwarding node 1114, which provides access to the gateway forwarding node 1134 of an external site. While the example paths provided above are limited, the controller in some embodiments identifies every potential path between a source and destination, and selects the best path.


As mentioned above, different embodiments generate and utilize routing graphs differently. For instance, some embodiments only define one routing graph but allow edge nodes to serves as either edge forwarding nodes or as hub forwarding nodes by providing two different costs for each such edge node for the two different capacities under which it could operate (i.e., a first cost when it operates as an edge forwarding node and a second cost when it operates as a hub forwarding node). These embodiments then perform path searches on this common routing graph to conjunctively identify for pairs of sites connected by the SD-WAN (1) routes that use a particular edge node as only an edge forwarding element and (2) routes that also use the particular edge node as a hub forwarding element.


Other embodiments, on the other hand, define two routing graphs with one routing graph not treating any edge forwarding node as a hub node, while the other routing graph allows the edge nodes to be edge forwarding nodes and hub forwarding nodes for some or all other edge nodes. These embodiments perform path searches on each routing graph to identify optimal routes between each pair of sites connected by the SD-WAN. FIG. 12 illustrates an example of two routing graphs 1200a and 1200b generated for an SD-WAN that treat one edge node 1212 (“E2”) differently. In graph 1200a, the edge node 1212 is designated only with the acronym EFE to identify that it only operates as an edge forwarding element. As such, in this routing graph, node 1212 cannot be used to define routes from node 1210 to node 1214 (i.e., via link 1240), and instead all possible routes must pass through the hub node 1220 and/or the cloud gateway node 1222, as highlighted by the overlaid example routes 1250a and 1250b.


In the second graph 1200b, the edge node 1212 is designated with both the acronyms EFE and HFE to identify that it can operate as an edge forwarding element and a hub forwarding element. As such, in this routing graph, node 1212 can be used to define routes from node 1210 to node 1214 (i.e., via link 1240) as highlighted by the overlaid routes 1252a and 1252b that are shown from node 1210 to node 1214 through the node 1212. In some embodiments, different costs are associated with the node 1212 acting as an EFE or HFE, as described above with reference to FIGS. 11A-11G.


Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (also referred to as computer readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.


In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.



FIG. 13 conceptually illustrates a computer system 1300 with which some embodiments of the invention are implemented. The computer system 1300 can be used to implement any of the above-described hosts, controllers, gateway and edge forwarding elements. As such, it can be used to execute any of the above described processes. This computer system includes various types of non-transitory machine readable media and interfaces for various other types of machine readable media. Computer system 1300 includes a bus 1305, processing unit(s) 1310, a system memory 1325, a read-only memory 1330, a permanent storage device 1335, input devices 1340, and output devices 1345.


The bus 1305 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 1300. For instance, the bus 1305 communicatively connects the processing unit(s) 1310 with the read-only memory 1330, the system memory 1325, and the permanent storage device 1335.


From these various memory units, the processing unit(s) 1310 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 1330 stores static data and instructions that are needed by the processing unit(s) 1310 and other modules of the computer system. The permanent storage device 1335, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the computer system 1300 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 1335.


Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 1335, the system memory 1325 is a read-and-write memory device. However, unlike storage device 1335, the system memory is a volatile read-and-write memory, such as random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 1325, the permanent storage device 1335, and/or the read-only memory 1330. From these various memory units, the processing unit(s) 1310 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.


The bus 1305 also connects to the input and output devices 1340 and 1345. The input devices enable the user to communicate information and select commands to the computer system. The input devices 1340 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 1345 display images generated by the computer system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as touchscreens that function as both input and output devices.


Finally, as shown in FIG. 13, bus 1305 also couples computer system 1300 to a network 1365 through a network adapter (not shown). In this manner, the computer can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet), or a network of networks (such as the Internet). Any or all components of computer system 1300 may be used in conjunction with the invention.


Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.


While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.


As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms “display” or “displaying” mean displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.


While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For instance, several of the above-described embodiments deploy gateways in public cloud datacenters. However, in other embodiments, the gateways are deployed in a third party's virtual private cloud datacenters (e.g., datacenters that the third party uses to deploy cloud gateways for different entities in order to deploy virtual networks for these entities). Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims
  • 1. A method of facilitating routing through a software-defined wide area network (SD-WAN) defined for an entity, the SD-WAN comprising (i) at least one datacenter site comprising a hub forwarding node and a plurality of server machines and (ii) two or more multi-user compute sites each comprising one edge forwarding node to connect multiple user machines at their respective sites to the SD-WAN, the method comprising: generating first and second routing graphs each for identifying multiple routes between forwarding nodes, with the first routing graph using a first edge forwarding node of a first multi-user compute site only as an edge forwarding element for connecting user machines at the first site to machines outside of the first site and the second routing graph using the first edge forwarding node as an edge forwarding element and as a hub to connect user machines of at least a second site to machines outside of the first and second sites;using the first and second routing graphs to perform first and second sets of path searches to identify first and second sets of routes between the forwarding nodes;generating first and second sets of route records to implement the identified first and second sets of routes; anddistributing to different forwarding nodes subsets of the first and second sets of routes, wherein the first edge forwarding node receives (i) edge-node route records for a first set of packets to and from the machines at the first site from and to machines outside of the first site and (ii) hub-node route records for forwarding a second set of packets from the second site to a third site, the first edge forwarding node operating as an edge forwarding node for the SD-WAN when it forwards the first set of packets and operating as a hub forwarding node for the SD-WAN when it forwards the second set of packets.
  • 2. The method of claim 1, wherein each edge forwarding node at each of the two or more multi-user sites serve as spoke nodes in a hub-and-spoke architecture that use the hub forwarding node at the datacenter site.
  • 3. The method of claim 1, wherein the first edge forwarding node operates as the hub forwarding node for the SD-WAN when the second edge forwarding node experiences a particular condition when forwarding the second set of packets.
  • 4. The method of claim 3, wherein the particular condition is associated with a specified threshold value, wherein when the second edge forwarding node selects a route from the second set of routes in which the first edge forwarding node operates as a hub forwarding node after exceeding the specified threshold associated with the particular condition.
  • 5. The method of claim 4, wherein the second edge forwarding node only uses the first edge forwarding node as a hub forwarding node for forwarding the second set of packets.
  • 6. The method of claim 1, wherein the subsets of the second set of routes identify the first edge forwarding node as a first hop for at least the second multi-user compute site.
  • 7. The method of claim 1, wherein the first edge forwarding node establishes at least one tunnel with the second edge forwarding node for receiving the second set of packets.
  • 8. The method of claim 7, wherein the tunnels are secure tunnels.
  • 9. The method of claim 1, wherein each edge forwarding node in the SD-WAN is associated with a set of SD-WAN profiles, each SD-WAN profile identifying at least one of a shared set of security, service, and policy parameters.
  • 10. The method of claim 9, wherein using the first and second routing graphs to perform first and second sets of path searches to identify first and second sets of routes between the forwarding nodes comprises using the set of SD-WAN profiles to identify one or more edge forwarding nodes to serve as hub forwarding nodes for the SD-WAN.
  • 11. The method of claim 1, wherein each route in the first and second sets of routes is associated with a respective cost calculated by a controller for the SD-WAN, wherein distributing to different forwarding nodes subsets of the first and second sets of routes further comprises distributing the subsets of the first and second sets of routes along with the respective calculated costs for each route.
  • 12. The method of claim 1, wherein the machines at the multi-user compute sites comprise computers and handheld devices.
  • 13. The method of claim 1, wherein machines outside of the first and second sites include server machines in datacenters.
  • 14. The method of claim 1, wherein machines outside of the first and second sites include user machines at a third multi-user compute site.
  • 15. The method of claim 1, wherein machines outside of the first and second sites include server machines at a third multi-user compute site.
  • 16. The method of claim 1, wherein each multi-user compute site comprises at least one building in which multiple computers of multiple users operate and access the SD-WAN through the edge forwarding node deployed at the respective site.
  • 17. A non-transitory machine readable medium storing a program which when executed by at least one processing unit facilitates routing through a software-defined wide area network (SD-WAN) defined for an entity, the SD-WAN comprising (i) at least one datacenter site comprising a hub forwarding node and a plurality of server machines and (ii) two or more multi-user compute sites each comprising one edge forwarding node to connect multiple user machines at their respective sites to the SD-WAN, the program comprising sets of instructions for: generating first and second routing graphs each for identifying multiple routes between forwarding nodes, with the first routing graph using a first edge forwarding node of a first multi-user compute site only as an edge forwarding element for connecting user machines at the first site to machines outside of the first site and the second routing graph using the first edge forwarding node as an edge forwarding element and as a hub to connect user machines of at least a second site to machines outside of the first and second sites;using the first and second routing graphs to perform first and second sets of path searches to identify first and second sets of routes between the forwarding nodes;generating first and second sets of route records to implement the identified first and second sets of routes; anddistributing to different forwarding nodes subsets of the first and second sets of routes, wherein the first edge forwarding node receives (i) edge-node route records for a first set of packets to and from the machines at the first site from and to machines outside of the first site and (ii) hub-node route records for forwarding a second set of packets from the second site to a third site, the first edge forwarding node operating as an edge forwarding node for the SD-WAN when it forwards the first set of packets, and operating as a hub forwarding node for the SD-WAN when it forwards the second set of packets.
  • 18. The non-transitory machine readable medium of claim 17, wherein each edge forwarding node at each of the two or more multi-user sites serve as spoke nodes in a hub-and-spoke architecture that use the hub forwarding node at the datacenter site.
  • 19. The non-transitory machine readable medium of claim 17, wherein the first edge forwarding node operates as the hub forwarding node for the SD-WAN when the second edge forwarding node experiences a particular condition when forwarding the second set of packets.
  • 20. The non-transitory machine readable medium of claim 19, wherein the particular condition is associated with a specified threshold value, wherein when the second edge forwarding node selects a route from the second set of routes in which the first edge forwarding node operates as a hub forwarding node after exceeding the specified threshold associated with the particular condition.
Priority Claims (1)
Number Date Country Kind
202141020149 May 2021 IN national
US Referenced Citations (731)
Number Name Date Kind
5652751 Sharony Jul 1997 A
5909553 Campbell et al. Jun 1999 A
6154465 Pickett Nov 2000 A
6157648 Voit et al. Dec 2000 A
6201810 Masuda et al. Mar 2001 B1
6363378 Conklin et al. Mar 2002 B1
6445682 Weitz Sep 2002 B1
6744775 Beshai et al. Jun 2004 B1
6976087 Westfall et al. Dec 2005 B1
7003481 Banka et al. Feb 2006 B2
7280476 Anderson Oct 2007 B2
7313629 Nucci et al. Dec 2007 B1
7320017 Kurapati et al. Jan 2008 B1
7373660 Guichard et al. May 2008 B1
7581022 Griffin et al. Aug 2009 B1
7680925 Sathyanarayana et al. Mar 2010 B2
7681236 Tamura et al. Mar 2010 B2
7962458 Holenstein et al. Jun 2011 B2
8094575 Vadlakonda et al. Jan 2012 B1
8094659 Arad Jan 2012 B1
8111692 Ray Feb 2012 B2
8141156 Mao et al. Mar 2012 B1
8224971 Miller et al. Jul 2012 B1
8228928 Parandekar et al. Jul 2012 B2
8243589 Trost et al. Aug 2012 B1
8259566 Chen et al. Sep 2012 B2
8274891 Averi et al. Sep 2012 B2
8301749 Finklestein et al. Oct 2012 B1
8385227 Downey Feb 2013 B1
8566452 Goodwin et al. Oct 2013 B1
8630291 Shaffer et al. Jan 2014 B2
8661295 Khanna et al. Feb 2014 B1
8724456 Hong et al. May 2014 B1
8724503 Johnsson et al. May 2014 B2
8745177 Kazerani et al. Jun 2014 B1
8799504 Capone et al. Aug 2014 B2
8804745 Sinn Aug 2014 B1
8806482 Nagargadde et al. Aug 2014 B1
8856339 Mestery et al. Oct 2014 B2
8964548 Keralapura et al. Feb 2015 B1
8989199 Sella et al. Mar 2015 B1
9009217 Nagargadde et al. Apr 2015 B1
9055000 Ghosh et al. Jun 2015 B1
9060025 Xu Jun 2015 B2
9071607 Twitchell, Jr. Jun 2015 B2
9075771 Gawali et al. Jul 2015 B1
9135037 Petrescu-Prahova et al. Sep 2015 B1
9137334 Zhou Sep 2015 B2
9154327 Marino et al. Oct 2015 B1
9203764 Shirazipour et al. Dec 2015 B2
9306949 Richard et al. Apr 2016 B1
9323561 Ayala et al. Apr 2016 B2
9336040 Dong et al. May 2016 B2
9354983 Yenamandra et al. May 2016 B1
9356943 Lopilato et al. May 2016 B1
9379981 Zhou et al. Jun 2016 B1
9413724 Xu Aug 2016 B2
9419878 Hsiao et al. Aug 2016 B2
9432245 Sorenson et al. Aug 2016 B1
9438566 Zhang et al. Sep 2016 B2
9450817 Bahadur et al. Sep 2016 B1
9450852 Chen et al. Sep 2016 B1
9462010 Stevenson Oct 2016 B1
9467478 Khan et al. Oct 2016 B1
9485163 Fries et al. Nov 2016 B1
9521067 Michael et al. Dec 2016 B2
9525564 Lee Dec 2016 B2
9559951 Sajassi et al. Jan 2017 B1
9563423 Pittman Feb 2017 B1
9602389 Maveli et al. Mar 2017 B1
9608917 Anderson et al. Mar 2017 B1
9608962 Chang Mar 2017 B1
9621460 Mehta et al. Apr 2017 B2
9641551 Kariyanahalli May 2017 B1
9648547 Hart May 2017 B1
9665432 Kruse et al. May 2017 B2
9686127 Ramachandran et al. Jun 2017 B2
9715401 Devine et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9722815 Mukundan et al. Aug 2017 B2
9747249 Cherian et al. Aug 2017 B2
9755965 Yadav et al. Sep 2017 B1
9787559 Schroeder Oct 2017 B1
9807004 Koley et al. Oct 2017 B2
9819540 Bahadur et al. Nov 2017 B1
9819565 Djukic et al. Nov 2017 B2
9825822 Holland Nov 2017 B1
9825911 Brandwine Nov 2017 B1
9825992 Xu Nov 2017 B2
9832128 Ashner et al. Nov 2017 B1
9832205 Santhi et al. Nov 2017 B2
9875355 Williams Jan 2018 B1
9906401 Rao Feb 2018 B1
9930011 Clemons, Jr. et al. Mar 2018 B1
9935829 Miller et al. Apr 2018 B1
9942787 Tillotson Apr 2018 B1
10038601 Becker et al. Jul 2018 B1
10057183 Salle et al. Aug 2018 B2
10057294 Xu Aug 2018 B2
10135789 Mayya et al. Nov 2018 B2
10142226 Wu et al. Nov 2018 B1
10178032 Freitas Jan 2019 B1
10187289 Chen et al. Jan 2019 B1
10200264 Menon et al. Feb 2019 B2
10229017 Zou et al. Mar 2019 B1
10237123 Dubey et al. Mar 2019 B2
10250498 Bales et al. Apr 2019 B1
10263832 Ghosh Apr 2019 B1
10320664 Nainar et al. Jun 2019 B2
10320691 Matthews et al. Jun 2019 B1
10326830 Singh Jun 2019 B1
10348767 Lee et al. Jul 2019 B1
10355989 Panchai Jul 2019 B1
10425382 Mayya et al. Sep 2019 B2
10454708 Mibu Oct 2019 B2
10454714 Mayya et al. Oct 2019 B2
10461993 Turabi et al. Oct 2019 B2
10498652 Mayya et al. Dec 2019 B2
10511546 Singarayan et al. Dec 2019 B2
10523539 Mayya et al. Dec 2019 B2
10550093 Ojima et al. Feb 2020 B2
10554538 Spohn et al. Feb 2020 B2
10560431 Chen et al. Feb 2020 B1
10565464 Han et al. Feb 2020 B2
10567519 Mukhopadhyaya et al. Feb 2020 B1
10574528 Mayya et al. Feb 2020 B2
10594516 Cidon et al. Mar 2020 B2
10594659 El-Moussa et al. Mar 2020 B2
10608844 Cidon et al. Mar 2020 B2
10637889 Ermagan et al. Apr 2020 B2
10666460 Cidon et al. May 2020 B2
10686625 Cidon et al. Jun 2020 B2
10693739 Naseri et al. Jun 2020 B1
10749711 Mukundan et al. Aug 2020 B2
10778466 Cidon et al. Sep 2020 B2
10778528 Mayya et al. Sep 2020 B2
10805114 Cidon et al. Oct 2020 B2
10805272 Mayya et al. Oct 2020 B2
10819564 Turabi et al. Oct 2020 B2
10826775 Moreno Nov 2020 B1
10841131 Cidon et al. Nov 2020 B2
10911374 Kumar Feb 2021 B1
10938693 Mayya et al. Mar 2021 B2
10951529 Duan et al. Mar 2021 B2
10958479 Cidon et al. Mar 2021 B2
10959098 Cidon et al. Mar 2021 B2
10992558 Silva et al. Apr 2021 B1
10992568 Michael et al. Apr 2021 B2
10999100 Cidon et al. May 2021 B2
10999137 Cidon et al. May 2021 B2
10999165 Cidon et al. May 2021 B2
11005684 Cidon May 2021 B2
11018995 Cidon et al. May 2021 B2
11044190 Ramaswamy et al. Jun 2021 B2
11050588 Mayya et al. Jun 2021 B2
11050644 Hegde et al. Jun 2021 B2
11071005 Shen et al. Jul 2021 B2
11089111 Markuze et al. Aug 2021 B2
11095612 Oswal et al. Aug 2021 B1
11102032 Cidon et al. Aug 2021 B2
11108851 Kurmala et al. Aug 2021 B1
11115347 Gupta et al. Sep 2021 B2
11115426 Pazhyannur et al. Sep 2021 B1
11115480 Markuze et al. Sep 2021 B2
11121962 Michael et al. Sep 2021 B2
11121985 Cidon et al. Sep 2021 B2
11128492 Sethi et al. Sep 2021 B2
11153230 Cidon et al. Oct 2021 B2
11171885 Cidon et al. Nov 2021 B2
11212140 Mukundan et al. Dec 2021 B2
11212238 Cidon et al. Dec 2021 B2
11223514 Mayya et al. Jan 2022 B2
11245641 Ramaswamy et al. Feb 2022 B2
20020085488 Kobayashi Jul 2002 A1
20020087716 Mustafa Jul 2002 A1
20020198840 Banka et al. Dec 2002 A1
20030061269 Hathaway et al. Mar 2003 A1
20030088697 Matsuhira May 2003 A1
20030112766 Riedel et al. Jun 2003 A1
20030112808 Solomon Jun 2003 A1
20030126468 Markham Jul 2003 A1
20030161313 Jinmei et al. Aug 2003 A1
20030189919 Gupta et al. Oct 2003 A1
20030202506 Perkins et al. Oct 2003 A1
20030219030 Gubbi Nov 2003 A1
20040059831 Chu et al. Mar 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040165601 Liu et al. Aug 2004 A1
20040224771 Chen et al. Nov 2004 A1
20050078690 DeLangis Apr 2005 A1
20050154790 Nagata et al. Jul 2005 A1
20050172161 Cruz et al. Aug 2005 A1
20050195754 Nosella Sep 2005 A1
20050265255 Kodialam et al. Dec 2005 A1
20060002291 Alicherry et al. Jan 2006 A1
20060114838 Mandavilli et al. Jun 2006 A1
20060171365 Borella Aug 2006 A1
20060182034 Klinker et al. Aug 2006 A1
20060182035 Vasseur Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060193252 Naseh et al. Aug 2006 A1
20070064604 Chen et al. Mar 2007 A1
20070064702 Bates et al. Mar 2007 A1
20070083727 Johnston et al. Apr 2007 A1
20070091794 Filsfils et al. Apr 2007 A1
20070103548 Carter May 2007 A1
20070115812 Hughes May 2007 A1
20070121486 Guichard et al. May 2007 A1
20070130325 Lesser Jun 2007 A1
20070162639 Chu et al. Jul 2007 A1
20070177511 Das et al. Aug 2007 A1
20070237081 Kodialam et al. Oct 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070268882 Breslau et al. Nov 2007 A1
20080002670 Bugenhagen et al. Jan 2008 A1
20080049621 McGuire et al. Feb 2008 A1
20080055241 Goldenberg et al. Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080095187 Jung et al. Apr 2008 A1
20080117930 Chakareski et al. May 2008 A1
20080144532 Chamarajanagar et al. Jun 2008 A1
20080181116 Kavanaugh et al. Jul 2008 A1
20080219276 Shah Sep 2008 A1
20080240121 Xiong et al. Oct 2008 A1
20090013210 McIntosh et al. Jan 2009 A1
20090125617 Kiessig et al. May 2009 A1
20090141642 Sun Jun 2009 A1
20090154463 Hines et al. Jun 2009 A1
20090247204 Sennett et al. Oct 2009 A1
20090274045 Meier et al. Nov 2009 A1
20090276657 Wetmore et al. Nov 2009 A1
20090303880 Maltz et al. Dec 2009 A1
20100008361 Guichard et al. Jan 2010 A1
20100017802 Lojewski Jan 2010 A1
20100046532 Okita Feb 2010 A1
20100061379 Parandekar et al. Mar 2010 A1
20100080129 Strahan et al. Apr 2010 A1
20100088440 Banks et al. Apr 2010 A1
20100091823 Retana et al. Apr 2010 A1
20100107162 Edwards et al. Apr 2010 A1
20100118727 Draves et al. May 2010 A1
20100118886 Saavedra May 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191884 Holenstein et al. Jul 2010 A1
20100223621 Joshi et al. Sep 2010 A1
20100226246 Proulx Sep 2010 A1
20100290422 Haigh et al. Nov 2010 A1
20100309841 Conte Dec 2010 A1
20100309912 Mehta et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100332657 Elyashev et al. Dec 2010 A1
20110007752 Silva et al. Jan 2011 A1
20110032939 Nozaki et al. Feb 2011 A1
20110040814 Higgins Feb 2011 A1
20110075674 Li et al. Mar 2011 A1
20110107139 Middlecamp et al. May 2011 A1
20110110370 Moreno et al. May 2011 A1
20110141877 Xu et al. Jun 2011 A1
20110142041 Imai Jun 2011 A1
20110153909 Dong Jun 2011 A1
20110235509 Szymanski Sep 2011 A1
20110255397 Kadakia et al. Oct 2011 A1
20120008630 Ould-Brahim Jan 2012 A1
20120027013 Napierala Feb 2012 A1
20120136697 Peles et al. May 2012 A1
20120157068 Eichen et al. Jun 2012 A1
20120173694 Yan et al. Jul 2012 A1
20120173919 Patel et al. Jul 2012 A1
20120182940 Taleb et al. Jul 2012 A1
20120221955 Raleigh et al. Aug 2012 A1
20120227093 Shalzkamer et al. Sep 2012 A1
20120250682 Vincent et al. Oct 2012 A1
20120250686 Vincent et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120287818 Corti Nov 2012 A1
20120300615 Kempf et al. Nov 2012 A1
20120307659 Yamada Dec 2012 A1
20120317291 Wolfe Dec 2012 A1
20130019005 Hui et al. Jan 2013 A1
20130021968 Reznik et al. Jan 2013 A1
20130044764 Casado et al. Feb 2013 A1
20130051237 Ong Feb 2013 A1
20130051399 Zhang et al. Feb 2013 A1
20130054763 Merwe et al. Feb 2013 A1
20130086267 Gelenbe et al. Apr 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130124718 Griffith et al. May 2013 A1
20130124911 Griffith et al. May 2013 A1
20130124912 Griffith et al. May 2013 A1
20130128889 Mathur et al. May 2013 A1
20130142201 Kim et al. Jun 2013 A1
20130170354 Takashima et al. Jul 2013 A1
20130173788 Song Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130191688 Agarwal et al. Jul 2013 A1
20130238782 Zhao et al. Sep 2013 A1
20130242718 Zhang Sep 2013 A1
20130254599 Katkar et al. Sep 2013 A1
20130258839 Wang et al. Oct 2013 A1
20130266015 Qu et al. Oct 2013 A1
20130266019 Qu et al. Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130286846 Atlas et al. Oct 2013 A1
20130297611 Moritz et al. Nov 2013 A1
20130297770 Zhang Nov 2013 A1
20130301469 Suga Nov 2013 A1
20130301642 Radhakrishnan et al. Nov 2013 A1
20130308444 Sem-Jacobsen et al. Nov 2013 A1
20130315242 Wang et al. Nov 2013 A1
20130315243 Huang et al. Nov 2013 A1
20130329548 Nakil et al. Dec 2013 A1
20130329601 Yin et al. Dec 2013 A1
20130329734 Chesla et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20140019604 Twitchell, Jr. Jan 2014 A1
20140019750 Dodgson et al. Jan 2014 A1
20140040975 Raleigh et al. Feb 2014 A1
20140064283 Balus et al. Mar 2014 A1
20140092907 Sridhar et al. Apr 2014 A1
20140108665 Arora et al. Apr 2014 A1
20140112171 Pasdar Apr 2014 A1
20140115584 Mudigonda et al. Apr 2014 A1
20140123135 Huang et al. May 2014 A1
20140126418 Brendel et al. May 2014 A1
20140156818 Hunt Jun 2014 A1
20140156823 Liu et al. Jun 2014 A1
20140164560 Ko et al. Jun 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140173113 Vemuri et al. Jun 2014 A1
20140173331 Martin et al. Jun 2014 A1
20140181824 Saund et al. Jun 2014 A1
20140208317 Nakagawa Jul 2014 A1
20140219135 Li et al. Aug 2014 A1
20140223507 Xu Aug 2014 A1
20140229210 Sharifian et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140258535 Zhang Sep 2014 A1
20140269690 Tu Sep 2014 A1
20140279862 Dietz et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140317440 Biermayr et al. Oct 2014 A1
20140321277 Lynn, Jr. et al. Oct 2014 A1
20140337500 Lee Nov 2014 A1
20140341109 Cartmell et al. Nov 2014 A1
20140372582 Ghanwani et al. Dec 2014 A1
20150003240 Drwiega et al. Jan 2015 A1
20150016249 Mukundan et al. Jan 2015 A1
20150029864 Raileanu et al. Jan 2015 A1
20150039744 Niazi et al. Feb 2015 A1
20150046572 Cheng et al. Feb 2015 A1
20150052247 Threefoot et al. Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150056960 Egner et al. Feb 2015 A1
20150058917 Xu Feb 2015 A1
20150088942 Shah Mar 2015 A1
20150089628 Lang Mar 2015 A1
20150092603 Aguayo et al. Apr 2015 A1
20150096011 Watt Apr 2015 A1
20150124603 Ketheesan et al. May 2015 A1
20150134777 Onoue May 2015 A1
20150139238 Pourzandi et al. May 2015 A1
20150146539 Mehta et al. May 2015 A1
20150163152 Li Jun 2015 A1
20150169340 Haddad et al. Jun 2015 A1
20150172121 Farkas et al. Jun 2015 A1
20150172169 DeCusatis et al. Jun 2015 A1
20150188823 Williams et al. Jul 2015 A1
20150189009 Bemmel Jul 2015 A1
20150195178 Bhattacharya et al. Jul 2015 A1
20150201036 Nishiki et al. Jul 2015 A1
20150222543 Song Aug 2015 A1
20150222638 Morley Aug 2015 A1
20150236945 Michael et al. Aug 2015 A1
20150236962 Veres et al. Aug 2015 A1
20150244617 Nakil et al. Aug 2015 A1
20150249644 Xu Sep 2015 A1
20150257081 Ramanujan Sep 2015 A1
20150271056 Chunduri et al. Sep 2015 A1
20150271104 Chikkamath et al. Sep 2015 A1
20150271303 Neginhal et al. Sep 2015 A1
20150281004 Kakadia et al. Oct 2015 A1
20150312142 Barabash et al. Oct 2015 A1
20150312760 O'Toole Oct 2015 A1
20150317169 Sinha et al. Nov 2015 A1
20150334025 Rader Nov 2015 A1
20150334696 Gu et al. Nov 2015 A1
20150341271 Gomez Nov 2015 A1
20150349978 Wu et al. Dec 2015 A1
20150350907 Timariu et al. Dec 2015 A1
20150363221 Terayama et al. Dec 2015 A1
20150363733 Brown Dec 2015 A1
20150372943 Hasan et al. Dec 2015 A1
20150372982 Herle et al. Dec 2015 A1
20150381407 Wang et al. Dec 2015 A1
20150381493 Bansal et al. Dec 2015 A1
20160020844 Hart Jan 2016 A1
20160021597 Hart Jan 2016 A1
20160035183 Buchholz et al. Feb 2016 A1
20160036924 Koppolu et al. Feb 2016 A1
20160036938 Aviles et al. Feb 2016 A1
20160037434 Gopal et al. Feb 2016 A1
20160072669 Saavedra Mar 2016 A1
20160072684 Manuguri et al. Mar 2016 A1
20160080502 Yadav et al. Mar 2016 A1
20160105353 Cociglio Apr 2016 A1
20160105392 Thakkar et al. Apr 2016 A1
20160105471 Nunes et al. Apr 2016 A1
20160105488 Thakkar et al. Apr 2016 A1
20160117185 Fang et al. Apr 2016 A1
20160134461 Sampath et al. May 2016 A1
20160134528 Lin et al. May 2016 A1
20160134591 Liao et al. May 2016 A1
20160142373 Ossipov May 2016 A1
20160150055 Choi May 2016 A1
20160164832 Bellagamba et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160173338 Wolting Jun 2016 A1
20160191363 Haraszti et al. Jun 2016 A1
20160191374 Singh et al. Jun 2016 A1
20160192403 Gupta et al. Jun 2016 A1
20160197834 Luft Jul 2016 A1
20160197835 Luft Jul 2016 A1
20160198003 Luft Jul 2016 A1
20160210209 Verkaik et al. Jul 2016 A1
20160212773 Kanderholm et al. Jul 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160218951 Vasseur et al. Jul 2016 A1
20160255169 Kovvuri et al. Sep 2016 A1
20160261493 Li Sep 2016 A1
20160261495 Xia et al. Sep 2016 A1
20160261506 Hegde Sep 2016 A1
20160261639 Xu Sep 2016 A1
20160269298 Li et al. Sep 2016 A1
20160269926 Sundaram Sep 2016 A1
20160285736 Gu Sep 2016 A1
20160308762 Teng et al. Oct 2016 A1
20160315912 Mayya et al. Oct 2016 A1
20160323377 Einkauf et al. Nov 2016 A1
20160328159 Coddington et al. Nov 2016 A1
20160330111 Manghirmalani et al. Nov 2016 A1
20160352588 Subbarayan et al. Dec 2016 A1
20160353268 Senarath et al. Dec 2016 A1
20160359738 Sullenberger et al. Dec 2016 A1
20160366187 Kamble Dec 2016 A1
20160371153 Dornemann Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20160380906 Hodique et al. Dec 2016 A1
20170005986 Bansal et al. Jan 2017 A1
20170012870 Blair et al. Jan 2017 A1
20170019428 Cohn Jan 2017 A1
20170026283 Williams et al. Jan 2017 A1
20170026355 Mathaiyan et al. Jan 2017 A1
20170034046 Cai et al. Feb 2017 A1
20170034129 Sawant et al. Feb 2017 A1
20170048296 Ramalho et al. Feb 2017 A1
20170053258 Carney et al. Feb 2017 A1
20170055131 Kong et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170063782 Jain et al. Mar 2017 A1
20170063794 Jain et al. Mar 2017 A1
20170064005 Lee Mar 2017 A1
20170093625 Pera et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170104653 Badea et al. Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170109212 Gaurav et al. Apr 2017 A1
20170118173 Arramreddy et al. Apr 2017 A1
20170123939 Maheshwari et al. May 2017 A1
20170126516 Tiagi et al. May 2017 A1
20170126564 Mayya et al. May 2017 A1
20170134186 Mukundan et al. May 2017 A1
20170134520 Abbasi et al. May 2017 A1
20170139789 Fries et al. May 2017 A1
20170155557 Desai et al. Jun 2017 A1
20170163473 Sadana et al. Jun 2017 A1
20170171310 Gardner Jun 2017 A1
20170181210 Nadella et al. Jun 2017 A1
20170195161 Ruel et al. Jul 2017 A1
20170195169 Mills et al. Jul 2017 A1
20170201585 Doraiswamy et al. Jul 2017 A1
20170207976 Rovner et al. Jul 2017 A1
20170214545 Cheng et al. Jul 2017 A1
20170214701 Hasan Jul 2017 A1
20170223117 Messerli et al. Aug 2017 A1
20170237710 Mayya et al. Aug 2017 A1
20170257260 Govindan et al. Sep 2017 A1
20170257309 Appanna Sep 2017 A1
20170264496 Ao et al. Sep 2017 A1
20170279717 Bethers et al. Sep 2017 A1
20170279803 Desai et al. Sep 2017 A1
20170280474 Vesterinen et al. Sep 2017 A1
20170288987 Pasupathy et al. Oct 2017 A1
20170289002 Ganguli et al. Oct 2017 A1
20170289027 Ratnasingham Oct 2017 A1
20170295264 Touitou et al. Oct 2017 A1
20170302565 Ghobadi et al. Oct 2017 A1
20170310641 Jiang et al. Oct 2017 A1
20170310691 Vasseur et al. Oct 2017 A1
20170317974 Masurekar et al. Nov 2017 A1
20170337086 Zhu et al. Nov 2017 A1
20170339054 Yadav et al. Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20170364419 Lo Dec 2017 A1
20170366445 Nemirovsky et al. Dec 2017 A1
20170366467 Martin et al. Dec 2017 A1
20170373950 Szilagyi et al. Dec 2017 A1
20170374174 Evens et al. Dec 2017 A1
20180006995 Bickhart et al. Jan 2018 A1
20180007123 Cheng et al. Jan 2018 A1
20180013636 Seetharamaiah et al. Jan 2018 A1
20180014051 Phillips et al. Jan 2018 A1
20180020035 Boggia et al. Jan 2018 A1
20180034668 Mayya et al. Feb 2018 A1
20180041425 Zhang Feb 2018 A1
20180062875 Tumuluru Mar 2018 A1
20180062914 Boutros et al. Mar 2018 A1
20180062917 Chandrashekhar et al. Mar 2018 A1
20180063036 Chandrashekhar et al. Mar 2018 A1
20180063193 Chandrashekhar et al. Mar 2018 A1
20180063233 Park Mar 2018 A1
20180063743 Tumuluru Mar 2018 A1
20180069924 Tumuluru et al. Mar 2018 A1
20180074909 Bishop et al. Mar 2018 A1
20180077081 Lauer et al. Mar 2018 A1
20180077202 Xu Mar 2018 A1
20180084081 Kuchibhotla et al. Mar 2018 A1
20180097725 Wood et al. Apr 2018 A1
20180114569 Strachan et al. Apr 2018 A1
20180123910 Fitzgibbon May 2018 A1
20180131608 Jiang et al. May 2018 A1
20180131615 Zhang May 2018 A1
20180131720 Hobson et al. May 2018 A1
20180145899 Rao May 2018 A1
20180159796 Wang et al. Jun 2018 A1
20180159856 Gujarathi Jun 2018 A1
20180167378 Kostyukov et al. Jun 2018 A1
20180176073 Dubey et al. Jun 2018 A1
20180176082 Katz et al. Jun 2018 A1
20180176130 Banerjee et al. Jun 2018 A1
20180213472 Ishii et al. Jul 2018 A1
20180219765 Michael et al. Aug 2018 A1
20180219766 Michael et al. Aug 2018 A1
20180234300 Mayya et al. Aug 2018 A1
20180260125 Botes et al. Sep 2018 A1
20180262468 Kumar et al. Sep 2018 A1
20180270104 Zheng et al. Sep 2018 A1
20180278541 Wu et al. Sep 2018 A1
20180295101 Gehrmann Oct 2018 A1
20180295529 Jen et al. Oct 2018 A1
20180302286 Mayya et al. Oct 2018 A1
20180302321 Manthiramoorthy et al. Oct 2018 A1
20180307851 Lewis Oct 2018 A1
20180316606 Sung et al. Nov 2018 A1
20180351855 Sood et al. Dec 2018 A1
20180351862 Jeganathan et al. Dec 2018 A1
20180351863 Vairavakkalai et al. Dec 2018 A1
20180351882 Jeganathan et al. Dec 2018 A1
20180367445 Bajaj Dec 2018 A1
20180373558 Chang et al. Dec 2018 A1
20180375744 Mayya et al. Dec 2018 A1
20180375824 Mayya et al. Dec 2018 A1
20180375967 Pithawala et al. Dec 2018 A1
20190013883 Vargas et al. Jan 2019 A1
20190014038 Ritchie Jan 2019 A1
20190020588 Twitchell, Jr. Jan 2019 A1
20190020627 Yuan Jan 2019 A1
20190028552 Johnson et al. Jan 2019 A1
20190036808 Shenoy Jan 2019 A1
20190036810 Michael et al. Jan 2019 A1
20190036813 Shenoy Jan 2019 A1
20190046056 Khachaturian et al. Feb 2019 A1
20190058657 Chunduri et al. Feb 2019 A1
20190058709 Kempf et al. Feb 2019 A1
20190068470 Mirsky Feb 2019 A1
20190068493 Ram et al. Feb 2019 A1
20190068500 Hira Feb 2019 A1
20190075083 Mayya et al. Mar 2019 A1
20190103990 Cidon et al. Apr 2019 A1
20190103991 Cidon et al. Apr 2019 A1
20190103992 Cidon et al. Apr 2019 A1
20190103993 Cidon et al. Apr 2019 A1
20190104035 Cidon et al. Apr 2019 A1
20190104049 Cidon et al. Apr 2019 A1
20190104050 Cidon et al. Apr 2019 A1
20190104051 Cidon et al. Apr 2019 A1
20190104052 Cidon et al. Apr 2019 A1
20190104053 Cidon et al. Apr 2019 A1
20190104063 Cidon et al. Apr 2019 A1
20190104064 Cidon et al. Apr 2019 A1
20190104109 Cidon et al. Apr 2019 A1
20190104111 Cidon et al. Apr 2019 A1
20190104413 Cidon et al. Apr 2019 A1
20190109769 Jain et al. Apr 2019 A1
20190140889 Mayya et al. May 2019 A1
20190140890 Mayya et al. May 2019 A1
20190158371 Dillon et al. May 2019 A1
20190158605 Markuze et al. May 2019 A1
20190199539 Deng et al. Jun 2019 A1
20190220703 Prakash et al. Jul 2019 A1
20190238364 Boutros et al. Aug 2019 A1
20190238446 Barzik et al. Aug 2019 A1
20190238449 Michael et al. Aug 2019 A1
20190238450 Michael et al. Aug 2019 A1
20190238483 Marichetty Aug 2019 A1
20190268421 Markuze et al. Aug 2019 A1
20190268973 Bull et al. Aug 2019 A1
20190280962 Michael et al. Sep 2019 A1
20190280963 Michael et al. Sep 2019 A1
20190280964 Michael et al. Sep 2019 A1
20190306197 Degioanni Oct 2019 A1
20190313907 Khachaturian et al. Oct 2019 A1
20190319847 Nahar et al. Oct 2019 A1
20190327109 Guichard et al. Oct 2019 A1
20190334813 Raj et al. Oct 2019 A1
20190334820 Zhao Oct 2019 A1
20190342219 Liu et al. Nov 2019 A1
20190356736 Narayanaswamy et al. Nov 2019 A1
20190364099 Thakkar et al. Nov 2019 A1
20190372888 Michael et al. Dec 2019 A1
20190372889 Michael et al. Dec 2019 A1
20190372890 Michael et al. Dec 2019 A1
20200014615 Michael et al. Jan 2020 A1
20200014616 Michael et al. Jan 2020 A1
20200014661 Mayya et al. Jan 2020 A1
20200021514 Michael et al. Jan 2020 A1
20200021515 Michael et al. Jan 2020 A1
20200036624 Michael et al. Jan 2020 A1
20200044943 Bor-Yaliniz et al. Feb 2020 A1
20200059420 Abraham Feb 2020 A1
20200059457 Raza et al. Feb 2020 A1
20200059459 Abraham et al. Feb 2020 A1
20200092207 Sipra et al. Mar 2020 A1
20200097327 Beyer et al. Mar 2020 A1
20200099659 Cometto et al. Mar 2020 A1
20200106696 Michael et al. Apr 2020 A1
20200106706 Mayya et al. Apr 2020 A1
20200119952 Mayya et al. Apr 2020 A1
20200127905 Mayya et al. Apr 2020 A1
20200127911 Gilson et al. Apr 2020 A1
20200153701 Mohan May 2020 A1
20200153736 Liebherr et al. May 2020 A1
20200162407 Tillotson May 2020 A1
20200169473 Rimar et al. May 2020 A1
20200177503 Hooda Jun 2020 A1
20200177550 Valluri Jun 2020 A1
20200177629 Hooda Jun 2020 A1
20200195557 Duan Jun 2020 A1
20200204460 Schneider et al. Jun 2020 A1
20200213212 Dillon et al. Jul 2020 A1
20200213224 Cheng et al. Jul 2020 A1
20200218558 Sreenath et al. Jul 2020 A1
20200235990 Janakiraman et al. Jul 2020 A1
20200235999 Mayya et al. Jul 2020 A1
20200236046 Jain et al. Jul 2020 A1
20200244721 S et al. Jul 2020 A1
20200252234 Ramamoorthi Aug 2020 A1
20200259700 Bhalla et al. Aug 2020 A1
20200267184 Vera-Schockner Aug 2020 A1
20200280587 Janakiraman et al. Sep 2020 A1
20200287819 Theogaraj et al. Sep 2020 A1
20200287976 Theogaraj Sep 2020 A1
20200296011 Jain et al. Sep 2020 A1
20200296026 Michael et al. Sep 2020 A1
20200314006 Mackie et al. Oct 2020 A1
20200314614 Moustafa et al. Oct 2020 A1
20200322230 Natal Oct 2020 A1
20200336336 Sethi Oct 2020 A1
20200344143 Faseela et al. Oct 2020 A1
20200344163 Gupta et al. Oct 2020 A1
20200351188 Arora et al. Nov 2020 A1
20200358878 Bansal Nov 2020 A1
20200366530 Mukundan et al. Nov 2020 A1
20200366562 Mayya et al. Nov 2020 A1
20200382345 Zhao et al. Dec 2020 A1
20200382387 Pasupathy et al. Dec 2020 A1
20200412576 Kondapavuluru et al. Dec 2020 A1
20200413283 Shen Dec 2020 A1
20210006482 Hwang et al. Jan 2021 A1
20210006490 Michael et al. Jan 2021 A1
20210029019 Kottapalli Jan 2021 A1
20210029088 Mayya et al. Jan 2021 A1
20210036888 Makkalla et al. Feb 2021 A1
20210036987 Mishra Feb 2021 A1
20210067372 Cidon et al. Mar 2021 A1
20210067373 Cidon et al. Mar 2021 A1
20210067374 Cidon et al. Mar 2021 A1
20210067375 Cidon et al. Mar 2021 A1
20210067407 Cidon et al. Mar 2021 A1
20210067427 Cidon et al. Mar 2021 A1
20210067442 Sundararajan Mar 2021 A1
20210067461 Cidon et al. Mar 2021 A1
20210067464 Cidon et al. Mar 2021 A1
20210067467 Cidon et al. Mar 2021 A1
20210067468 Cidon et al. Mar 2021 A1
20210105199 H et al. Apr 2021 A1
20210112034 Sundararajan et al. Apr 2021 A1
20210126853 Ramaswamy et al. Apr 2021 A1
20210126854 Guo et al. Apr 2021 A1
20210126860 Ramaswamy et al. Apr 2021 A1
20210144091 H et al. May 2021 A1
20210160169 Shen May 2021 A1
20210160813 Gupta May 2021 A1
20210184952 Mayya et al. Jun 2021 A1
20210184966 Ramaswamy et al. Jun 2021 A1
20210184983 Ramaswamy et al. Jun 2021 A1
20210194814 Roux et al. Jun 2021 A1
20210226880 Ramamoorthy et al. Jul 2021 A1
20210234728 Cidon et al. Jul 2021 A1
20210234775 Devadoss et al. Jul 2021 A1
20210234786 Devadoss et al. Jul 2021 A1
20210234804 Devadoss et al. Jul 2021 A1
20210234805 Devadoss et al. Jul 2021 A1
20210235312 Devadoss et al. Jul 2021 A1
20210235313 Devadoss et al. Jul 2021 A1
20210266262 Subramanian et al. Aug 2021 A1
20210279069 Salgaonkar et al. Sep 2021 A1
20210328835 Mayya et al. Oct 2021 A1
20210336880 Gupta Oct 2021 A1
20210377109 Shrivastava Dec 2021 A1
20210377156 Michael et al. Dec 2021 A1
20210392060 Silva et al. Dec 2021 A1
20210392070 Tootaghaj et al. Dec 2021 A1
20210399920 Sundararajan et al. Dec 2021 A1
20210399978 Michael et al. Dec 2021 A9
20210400113 Markuze et al. Dec 2021 A1
20220006726 Michael et al. Jan 2022 A1
20220006751 Ramaswamy et al. Jan 2022 A1
20220006756 Ramaswamy Jan 2022 A1
20220035673 Markuze et al. Feb 2022 A1
20220038370 Vasseur Feb 2022 A1
20220038557 Markuze et al. Feb 2022 A1
Foreign Referenced Citations (25)
Number Date Country
1926809 Mar 2007 CN
102577270 Jul 2012 CN
102811165 Dec 2012 CN
104956329 Sep 2015 CN
1912381 Apr 2008 EP
3041178 Jul 2016 EP
3509256 Jul 2019 EP
2010233126 Oct 2010 JP
2574350 Feb 2016 RU
03073701 Sep 2003 WO
2007016834 Feb 2007 WO
2012167184 Dec 2012 WO
2016061546 Apr 2016 WO
2017083975 May 2017 WO
2019070611 Apr 2019 WO
2019094522 May 2019 WO
2020012491 Jan 2020 WO
2020018704 Jan 2020 WO
2020091777 May 2020 WO
2020101922 May 2020 WO
2020112345 Jun 2020 WO
2021040934 Mar 2021 WO
2021118717 Jun 2021 WO
2021150465 Jul 2021 WO
2022005607 Jan 2022 WO
Non-Patent Literature Citations (51)
Entry
Li, Shengru, et al. “Source routing with protocol-oblivious forwarding (POF) to enable efficient e-health data transfers.” 2016 IEEE International Conference on Communications (ICC). IEEE, 2016.
Mine, Gao, et al. “A design of SD-WAN-oriented wide area network access.” 2020 International Conference on Computer Communication and Network Security (CCNS). IEEE, 2020.
Cox, Jacob H., et al. “Advancing software-defined networks: Asurvey.” IEEE Access 5 (2017): 25487-25526.
Guo, Xiangyi, et al., (U.S. Appl. No. 62/925,193), filed Oct. 23, 2019, 26 pages.
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF.
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE.
Non-Published Commonly Owned U.S. Appl. No. 17/542,413, filed Dec. 4, 2021, 173 pages, VMware, Inc.
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE.
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel.
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK.
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland.
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE.
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Augusl 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA.
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada.
Non-Published Commonly Owned U.S. Appl. No. 17/072,764, filed Oct. 16, 2020, 33 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/072,774, filed Oct. 16, 2020, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/085,893, filed Oct. 30, 2020, 34 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/085,916, filed Oct. 30, 2020, 35 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/103,614, filed Nov. 24, 2020, 38 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/143,092, filed Jan. 6, 2021, 42 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/143,094, filed Jan. 6, 2021, 42 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/194,038, filed Mar. 5, 2021, 35 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/227,016, filed Apr. 9, 2021, 37 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/227,044, filed Apr. 9, 2021, 37 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/240,890, filed Apr. 26, 2021, 325 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/240,906, filed Apr. 26, 2021, 18 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/351,327 with similar specification, filed Jun. 18, 2021, 48 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/351,333 with similar specification, filed Jun. 18, 2021, 47 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/351,342 with similar specification, filed Jun. 18, 2021, 47 pages, VMware, Inc.
Non-Published Commonly Owned Related U.S. Appl. No. 17/351,345 with similar specification, filed Jun. 18, 2021, 48 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/361,292, filed Jun. 28, 2021, 35 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/467,378, filed Sep. 6, 2021, 157 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/474,034, filed Sep. 13, 2021, 349 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group.
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons.
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt.
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA.
Xie, Junheng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE.
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA.
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036.
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China.
Non-Published Commonly Owned Related International Patent Application PCT/US2021/065168 with similar specification, filed Dec. 24, 2021, 53 pages, VMware, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/562,890, filed Dec. 27, 2021, 36 pages, Nicira, Inc.
Non-Published Commonly Owned U.S. Appl. No. 17/572,583, filed Jan. 10, 2022, 33 pages, Nicira, Inc.
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India.
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain.
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/.
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482.
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE Infocom 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada.
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Disco, Barcelona, Spain, retrieved from https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf.
PCT International Search Report and Written Opinion of Commonly Owned International Patent Application PCT/US2021/065168, dated May 6, 2022, 18 pages, International Searching Authority (EPO).